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[3] Quantum refrigerator, Ben-Or et al, QIP (2013). =P

‘Non-unital' noisy circuits can be made fault-tolerant,
without fresh auxiliary qubits!

[5] Relative entropy convergence for depolarizing channels, Muller-Hermes et al, J. Math. Phys. (2016).

[6] Limitations of noisy reversible computation, Aharonov et al, ArXiv (1996).



What happens for generic noisy circuits?




If the noise is depolarizing, no layers matter.




If the noise is depolarizing, no layers matter.

(Even for ALL circuits)




If the noise is non-unital, the last O(log(n)) do matter!




If the noise is non-unital, the last O(log(n)) do matter!

(for most circuits)




Effective shallow circuits

(Proposition.

For any initial state p,, (possibly complex) and observable O,

Eg [|Tr (0®(po)) — Tr (0P _.1)(00))|] < O]|ec exp(=Q(F)). P =

\_




Effective shallow circuits

(Proposition.

For any initial state p,, (possibly complex) and observable O,

Eg [|Tr (0®(po)) — Tr (0P _.1)(00))|] < 0]|ec exp(=Q(F)). P =

\

Target expectation value

\_




Effective shallow circuits

Groposition.

For any initial state p,, (possibly complex) and observable O,

Eg [|Tr (0®(po)) — Tr (0P _.1)(00))|] < 0]|ec exp(=Q(F)). P =

\ \

Target expectation value Last k layers

\_




Effective shallow circuits

Groposition.

For any initial state p,, (possibly complex) and observable O,

Eg [|Tr (O®(po)) — Tr (OCD[L—k,u(UQ)\)H < |[Olloc exp(—£(k)). P =

\ \ Any preferred initial state
Target expectation value

\_

Last k layers
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Classical simulation of noisy random circuits
Task: Estimate Tr( P®(pg)), with high probability over the choice of ®.

A )

Solution: It suffices to output Tt (PP, 11(]0")0™])). ]
D= -
Previous proposition. :

Eg HTI" (P®(po)) — Tr (P(I)[L—k,L](|On><On|)> H < exp(—Q(k + [P])). < 7 >

{

Choosing k = O(log(e™1)) suffices to have: < €

« We have Tr(P®(;, ;. 1(|0")X0"])) = Tr(EI»[M,L]*(P}!O%(O”D

If P is local, then this is also local

* Thus, this can be computed efficiently for light-cone arguments.

Computational time (for 1D): exp(O(k)) = poly(e_l) O(k) qubits



Barren plateaus are bad for variational algorithms

Gradient vanishes in all
directions; can't figure out
where to go!

https://www.eurekalert.org/multimedia/739167



Barren plateaus make optimization hard

Math translation of ‘vanishing gradient”.
Vary,,..v,, [C] = O(exp(—n))

Recall: We are optimizing over
Uy,...U,

C = gradient of cost function
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[1] Barren plateaus in quantum neural network training landscapes. McClean et al. Nature Comm. (2018).
[2] Noise-induced barren plateaus in variational quantum algorithms. Wang et al, Nature Comm. (2021).
Compare with: [3] Beyond unital noise in variational quantum algorithms: noise-induced barren plateaus and fixed points. Singkanipa et al., ArXiv. (2024).
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« Work in the Heisenberg picture. Tr(P®(pg)) = Tr(®*(P)po)

« 2-design properties (of the 2-qubits gates).

e ‘Normal form’ of noisy channels. Any 1-qubit channelis unitarily equivalent to a channel parametrized by:
(DXaDY7 DZ)7 (tXatY7tZ) < R3

N(X)=DxX
N(Y) = DyY
N(Z)=DyZ
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Thanks a lot for your attention!

[1] Effect of non-unital noise on random circuit sampling, Fefferman et al, QIP (2023).
[2] A polynomial-time classical algorithm for noisy random circuit sampling, Aharonov et al., STOC (2023)
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