Quantifying the intrinsic randomness of quantum measurements

Gabriel Senno, Thomas Strohm and Antonio Acín.

Phys. Rev. Lett. 131, 130202 (2023).

 p_{guess} : "probability that Eve guesses the outcome of a measurement described by the POVM $\{M_S^x\}_x$ on a system S in the state ρ_S , about which she holds side information *E*"

 p_{guess} : "probability that Eve guesses the outcome of a measurement described by the POVM $\{M_S^x\}_x$ on a system S in the state ρ_S , about which she holds side information *E*"

 p_{guess} : "probability that Eve guesses the outcome of a measurement described by the POVM $\{M_S^x\}_x$ on a system S in the state ρ_S , about which she holds side information *E*"

Let $M_S=\{M_S^0,M_S^1\}$ with $M_S^1=\eta\vert1\rangle\langle1\vert$ and $\vert\phi\rangle_S=\cos\left(\frac{\theta}{2}\right)$ $\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)|1\rangle$

Let $M_S=\{M_S^0,M_S^1\}$ with $M_S^1=\eta\vert1\rangle\langle1\vert$ and $\vert\phi\rangle_S=\cos\left(\frac{\theta}{2}\right)$ $\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)|1\rangle$

Notice that
$$
M_S^0 = I - \eta |1\rangle\langle 1|
$$

= $[|0\rangle\langle 0| + |1\rangle\langle 1|] - \eta |1\rangle\langle 1| + \eta |0\rangle\langle 0| - \eta |0\rangle\langle 0|$
= $(1 - \eta)I + \eta |0\rangle\langle 0|$

Let $M_S=\{M_S^0,M_S^1\}$ with $M_S^1=\eta\vert1\rangle\langle1\vert$ and $\vert\phi\rangle_S=\cos\left(\frac{\theta}{2}\right)$ $\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)|1\rangle$

and $M_S^1 = (1 - \eta) * \mathbf{0} + \eta |1\rangle\langle 1|$ Notice that $M_S^0 = I - \eta |1\rangle\langle 1|$ $= (1 - \eta)I + \eta|0\rangle\langle0|$ $=$ $[|0\rangle\langle0| + |1\rangle\langle1|] - \eta|1\rangle\langle1| + \eta|0\rangle\langle0| - \eta|0\rangle\langle0|$

Let $M_S=\{M_S^0,M_S^1\}$ with $M_S^1=\eta\vert1\rangle\langle1\vert$ and $\vert\phi\rangle_S=\cos\left(\frac{\theta}{2}\right)$ $\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)|1\rangle$

Notice that
$$
M_S^0 = I - \eta |1\rangle\langle 1|
$$

\n
$$
= [|0\rangle\langle 0| + |1\rangle\langle 1|] - \eta |1\rangle\langle 1| + \eta |0\rangle\langle 0| - \eta |0\rangle\langle 0|
$$
\n
$$
= (1 - \eta)I + \eta |0\rangle\langle 0|
$$
\nand $M_S^1 = (1 - \eta) * \mathbf{0} + \eta |1\rangle\langle 1|$

Measuring M_S is sampling $\Lambda \sim \text{Bernoulli}(\eta)$ and then measuring M_S^{λ} with $M_S^0 = \{I, \mathbf{O}\}\$ and $M_S^1 = \{ |0\rangle, |1\rangle \}$.

Let $M_S=\{M_S^0,M_S^1\}$ with $M_S^1=\eta\vert1\rangle\langle1\vert$ and $\vert\phi\rangle_S=\cos\left(\frac{\theta}{2}\right)$ $\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)|1\rangle$

```
and M_S^1 = (1 - \eta) * \mathbf{0} + \eta |1\rangle\langle 1|Notice that M_S^0 = I - \eta |1\rangle\langle 1|= (1 - \eta)I + \eta |0\rangle\langle 0|= \frac{10}{0!} + \frac{1}{(1)} \frac{1}{1} \frac{-\eta}{1}\frac{1}{(1+\eta)} \frac{0}{0!} \frac{-\eta}{0!}
```
Measuring M_S is sampling $\Lambda \sim \text{Bernoulli}(\eta)$ and then measuring M_S^{λ} with $M_S^0 = \{I, \mathbf{O}\}\$ and $M_S^1 = \{ |0\rangle, |1\rangle \}$.

If Eve sees $\lambda = 0$, she guesses $x =0$ else she guesses $x = \argmax$ \mathcal{Y} $y|\phi\rangle|^2$.

Let $M_S=\{M_S^0,M_S^1\}$ with $M_S^1=\eta\vert1\rangle\langle1\vert$ and $\vert\phi\rangle_S=\cos\left(\frac{\theta}{2}\right)$ $\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)|1\rangle$

Notice that
$$
M_S^0 = I - \eta |1\rangle\langle 1|
$$

\n
$$
= [|0\rangle\langle 0| + |1\rangle\langle 1|] - \eta |1\rangle\langle 1| + \eta |0\rangle\langle 0| - \eta |0\rangle\langle 0|
$$
\n
$$
= (1 - \eta)I + \eta |0\rangle\langle 0|
$$
\nand $M_S^1 = (1 - \eta) * \mathbf{0} + \eta |1\rangle\langle 1|$

Measuring M_S is sampling $\Lambda \sim \text{Bernoulli}(\eta)$ and then measuring M_S^{λ} with $M_S^0 = \{I, \mathbf{O}\}\$ and $M_S^1 = \{ |0\rangle, |1\rangle \}$.

If Eve sees $\lambda = 0$, she guesses $x =0$ else she guesses $x = \argmax$ \mathcal{Y} $y|\phi\rangle|^2$.

She's correct with prob $p_{\text{guess}} = (1 - \eta) + \eta \max_y$ $y|\phi\rangle|^2$

Let $M_S=\{M_S^0,M_S^1\}$ with $M_S^1=\eta\vert1\rangle\langle1\vert$ and $\vert\phi\rangle_S=\cos\left(\frac{\theta}{2}\right)$ $\left(\frac{\theta}{2}\right)|0\rangle + \sin\left(\frac{\theta}{2}\right)|1\rangle$

Measuring M_S is sampling $\Lambda \sim \text{Bernoulli}(\eta)$ and then measuring M_S^{λ} with $M_S^0 = \{I, \mathbf{O}\}\$ and $M_S^1 = \{ |0\rangle, |1\rangle \}$.

If Eve sees $\lambda = 0$, she guesses $x =0$ else she guesses $x = \argmax$ \mathcal{Y} $y|\phi\rangle|^2$.

She's correct with prob $p_{\text{guess}} = (1 - \eta) + \eta \max_y$ $y|\phi\rangle|^2$

$$
\rho_{XE} := \sum_{x} |x\rangle\langle x| \otimes \tilde{\rho}_{E}^{x}
$$

with $\tilde{\rho}_{E}^{x} := \text{Tr}_{SA}[(\Pi_{SA}^{x} \otimes I)|\phi, \psi\rangle\langle\phi, \psi|]$

 σ_A

 $\{\Pi_{SA}^x\}_x$

 $\rightarrow x$

 \boldsymbol{P}

 $|\phi\rangle_S$

 1 D. Frauchiger, M. Troyer and R. Renner, "True randomness from realistic quantum devices", arXiv:1311.4547.

 1 D. Frauchiger, M. Troyer and R. Renner, "True randomness from realistic quantum devices", arXiv:1311.4547.

 1 D. Frauchiger, M. Troyer and R. Renner, "True randomness from realistic quantum devices", arXiv:1311.4547. 2 GS, T. Strohm and A. Acín, Phys. Rev. Lett. 131, 130202 (2023).

General scenario

Results (1/2)

Thm: For every state ρ_S and every POVM $\{M_S^{\chi}\}_\chi$ it holds that

- 1. $p_{guess}(X|\Lambda, \rho_S, \{M_S^x\}_x) \leq p_{guess}(X|E, \rho_S, \{M_S^x\}_x)$ and
- 2. If $p_{guess}(X|E, \rho_S, \{M_S^x\}_x)$ has an optimal solution $\langle \{M_E^x\}_x, \{\Pi_{SA}^x\}_x, \rho_{SA}\rangle$ such that the postmeasurement states on SA

 $\tilde{\rho}_{SA}^{x} = \mathrm{Tr}_{E}[(I_{SA} \otimes M_{E}^{x})|\psi\rangle\langle\psi|]$

are all separable, then $p_{guess}(X|E, \rho_S, \{M_S^X\}_x) \leq p_{guess}(X|\Lambda, \rho_S, \{M_S^X\}_x)$ \mathcal{X}

Results (1/2)

Thm: For every state ρ_S and every POVM $\{M_S^{\chi}\}_\chi$ it holds that

- 1. $p_{guess}(X|\Lambda, \rho_S, \{M_S^x\}_x) \leq p_{guess}(X|E, \rho_S, \{M_S^x\}_x)$ and
- 2. If $p_{guess}(X|E, \rho_S, \{M_S^x\}_x)$ has an optimal solution $\langle \{M_E^x\}_x, \{\Pi_{SA}^x\}_x, \rho_{SA}\rangle$ such that the postmeasurement states on SA

 $\tilde{\rho}_{SA}^{x} = \mathrm{Tr}_{E}[(I_{SA} \otimes M_{E}^{x})|\psi\rangle\langle\psi|]$

are all separable, then $p_{guess}(X|E, \rho_S, \{M_S^X\}_x) \leq p_{guess}(X|\Lambda, \rho_S, \{M_S^X\}_x)$ \mathcal{X}

Observe that equality for the case of ρ_S pure follows as a corollary.

Restricted adversarial setting

In [1], intrinsic randomness quantification was studied under the assumptions:

> 1. System A and ancilla S are uncorrelated and,

$$
|\psi\rangle_{SAE}=|\phi\rangle_{SE_{1}}|\varphi\rangle_{AE_{2}}
$$

[1] H. Dai, B. Chen, X. Zhang and X. Ma (2023), "Intrinsic randomness under general quantum measurements", Phys. Rev. Research 5, 033081.

Restricted adversarial setting

In [1], intrinsic randomness quantification was studied under the assumptions:

- 1. System A and ancilla S are uncorrelated and,
- 2. Eve is restricted to act on their purifications *individually*.

$$
|\psi\rangle_{SAE}=|\phi\rangle_{SE_{1}}|\varphi\rangle_{AE_{2}}
$$

 $M_E^{\chi} = M_{E_1}^{\chi} \otimes M_{E_2}^{\chi}$

[1] H. Dai, B. Chen, X. Zhang and X. Ma (2023), "Intrinsic randomness under general quantum measurements", Phys. Rev. Research 5, 033081.

Restricted adversarial setting

In [1], intrinsic randomness quantification was studied under the assumptions:

- 1. System A and ancilla S are uncorrelated and,
- 2. Eve is restricted to act on their purifications *individually*.

$$
|\psi\rangle_{SAE}=|\phi\rangle_{SE_1}|\varphi\rangle_{AE_2}
$$

 $M_E^{\chi} = M_{E_1}^{\chi} \otimes M_{E_2}^{\chi}$

Thm. 1 implies that no separation between the guessing probabilities in the classical and quantum pictures can be seen under this restrictions.

[1] H. Dai, B. Chen, X. Zhang and X. Ma (2023), "Intrinsic randomness under general quantum measurements", Phys. Rev. Research 5, 033081.

Results (2/2)

Thm: There exists a 4-outcome qubit POVM $\{F_S^x\}_x$ such that

 $p_{guess}(X|\Lambda, I/2, \{F_S^x\}_x) < p_{guess}(X|E, I/2, \{F_S^x\}_x) = 1.$

Results (2/2)

Thm: There exists a 4-outcome qubit POVM $\{F_S^x\}_x$ such that

 $p_{guess}(X|\Lambda, I/2, \{F_S^x\}_x) < p_{guess}(X|E, I/2, \{F_S^x\}_x) = 1.$

Proof (sketch):

Results (2/2)

Thm: There exists a 4-outcome qubit POVM $\{F_S^x\}_x$ such that

 $p_{guess}(X|\Lambda, I/2, \{F_S^x\}_x) < p_{guess}(X|E, I/2, \{F_S^x\}_x) = 1.$

Proof (sketch):

1. Let $\rho_{SA} = \frac{1}{4}$ $\frac{1}{4}\sum |\psi^x\rangle\langle\psi^x|$ with $\{|\psi^x\rangle\}_x$ be the entangled basis for two qubits from [1] and let $F_S^x=0$ $\mathrm{Tr}[\Pi_{SA}^x(I\otimes\rho_A)]$ with $\Pi_{SA}^x=|\psi^x\rangle\langle\psi^x|$. Quantum guessing probability is then unity by construction.

Results (2/2)

Thm: There exists a 4-outcome qubit POVM $\{F_S^x\}_x$ such that

 $p_{guess}(X|\Lambda, I/2, \{F_S^x\}_x) < p_{guess}(X|E, I/2, \{F_S^x\}_x) = 1.$

Proof (sketch):

- 1. Let $\rho_{SA} = \frac{1}{4}$ $\frac{1}{4}\sum |\psi^x\rangle\langle\psi^x|$ with $\{|\psi^x\rangle\}_x$ be the entangled basis for two qubits from [1] and let $F_S^x=0$ $\mathrm{Tr}[\Pi_{SA}^x(I\otimes\rho_A)]$ with $\Pi_{SA}^x=|\psi^x\rangle\langle\psi^x|$. Quantum guessing probability is then unity by construction.
- 2. We show that for qubit POVMs,

 $p_{guess}(X|\Lambda,\rho,\{M_S^x\}_x)=1 \ \Rightarrow \ \{M_S^x\}_x$ is a convex combination of projective measurements.

Results (2/2)

Thm: There exists a 4-outcome qubit POVM $\{F_S^x\}_x$ such that

 $p_{guess}(X|\Lambda, I/2, \{F_S^x\}_x) < p_{guess}(X|E, I/2, \{F_S^x\}_x) = 1.$

Proof (sketch):

- 1. Let $\rho_{SA} = \frac{1}{4}$ $\frac{1}{4}\sum |\psi^x\rangle\langle\psi^x|$ with $\{|\psi^x\rangle\}_x$ be the entangled basis for two qubits from [1] and let $F_S^x=0$ $\mathrm{Tr}[\Pi_{SA}^x(I\otimes\rho_A)]$ with $\Pi_{SA}^x=|\psi^x\rangle\langle\psi^x|$. Quantum guessing probability is then unity by construction.
- 2. We show that for qubit POVMs,

 $p_{guess}(X|\Lambda,\rho,\{M_S^x\}_x)=1 \ \Rightarrow \ \{M_S^x\}_x$ is a convex combination of projective measurements.

3. Finally, using tools from [2], we show that $\{F_S^x\}_x$ is not a convex combination of projective measurements.

[1] A. Tavakoli et al., "Bilocal Bell inequalities violated by the quantum elegant joint measurement", Phys. Rev. Lett. 126, 220401 (2021). [2] M. Oszmaniec et al., "Simulating positive-operator-valued measures with projective measurements", Phys. Rev. Lett. 119, 190501 (2017).

• If a given POVM $\{M_S^x\}_x$ is not a convex combination of projective measurements, then, in order to measure it, one necessarily must implement a Naimark dilation.

- If a given POVM $\{M_S^x\}_x$ is not a convex combination of projective measurements, then, in order to measure it, one necessarily must implement a Naimark dilation.
- The information about the dilation is not being given to classical Eve. Therefore, it seems to make sense that her guessing probability is below that of quantum Eve.

- If a given POVM $\{M_S^x\}_x$ is not a convex combination of projective measurements, then, in order to measure it, one necessarily must implement a Naimark dilation.
- The information about the dilation is not being given to classical Eve. Therefore, it seems to make sense that her guessing probability is below that of quantum Eve.
- However, that cannot be the whole explanation, because this already happens in the setting of pure states in which we do have equality.

- If a given POVM $\{M_S^x\}_x$ is not a convex combination of projective measurements, then, in order to measure it, one necessarily must implement a Naimark dilation.
- The information about the dilation is not being given to classical Eve. Therefore, it seems to make sense that her guessing probability is below that of quantum Eve.
- However, that cannot be the whole explanation, because this already happens in the setting of pure states in which we do have equality.

Future work

- Characterize the set of states and measurements for which the classical and quantum *pguesses* coincide.
- Find ways to compute (or to, at least, computably approximate from above) $p_{guess}(X|E, \rho_S, \{M_S^x\}_x).$

¡Gracias!

¡Gracias!

Questions?