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Observe that equality for the case of ps pure follows as a corollary.
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Thm. 1 implies that no separation between the guessing probabilities in the classical and quantum
pictures can be seen under this restrictions.

[1] H. Dai, B. Chen, X. Zhang and X. Ma (2023), “Intrinsic randomness under general quantum measurements”, Phys. Rev.
Research 5, 033081.
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Thm: There exists a 4-outcome qubit POVM {F¢{},, such that

pguess(XlA; 1/2; {F.Sec}x) < pguess(XlE; 1/2; {Fsgc}x) = 1
Proof (sketch):

1. Letpgy = %Z|¢x)(1/)x| with {|Y*)}, be the entangled basis for two qubits from [1] and let F& =

Tr[E,(I Q py)] with T1E, = |Y*W*|. Quantum guessing probability is then unity by construction.
2. We show that for qubit POVMs,
Dguess XA, p,{M5}) =1 = {M§}, is a convex combination of projective measurements.

3. Finally, using tools from [2], we show that {F{},, is not a convex combination of projective

measurements.

[1] A. Tavakoli et al., “Bilocal Bell inequalities violated by the quantum elegant joint measurement”, Phys. Rev. Lett. 126, 220401 (2021).

[2] M. Oszmaniec et al., “Simulating positive-operator-valued measures with projective measurements”, Phys. Rev. Lett. 119, 190501 (2017).



Discussion



Discussion

 If a given POVM {MZ}, is not a convex combination of projective measurements, then, in
order to measure it, one necessarily must implement a Naimark dilation.



Discussion

 If a given POVM {MZ}, is not a convex combination of projective measurements, then, in
order to measure it, one necessarily must implement a Naimark dilation.
* The information about the dilation is not being given to classical Eve. Therefore, it seems

to make sense that her guessing probability is below that of quantum Eve.



Discussion

 If a given POVM {M{Z}, is not a convex combination of projective measurements, then, in
order to measure it, one necessarily must implement a Naimark dilation.

* The information about the dilation is not being given to classical Eve. Therefore, it seems
to make sense that her guessing probability is below that of quantum Eve.

 However, that cannot be the whole explanation, because this already happens in the
setting of pure states in which we do have equality.



Discussion
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order to measure it, one necessarily must implement a Naimark dilation.

* The information about the dilation is not being given to classical Eve. Therefore, it seems
to make sense that her guessing probability is below that of quantum Eve.

 However, that cannot be the whole explanation, because this already happens in the
setting of pure states in which we do have equality.

Future work

* Characterize the set of states and measurements for which the classical and quantum
pguesses coincide.
* Find ways to compute (or to, at least, computably approximate from above)

pguess (XlE: Ps {Mszc}x)
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