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Tr Π𝑆𝐴
𝑥 𝜌𝑆𝐴 = Tr[𝑀𝑆

𝑥𝜌𝑆]
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In [1], intrinsic randomness quantification
was studied under the assumptions: 

1. System A and ancilla S are 
uncorrelated and, 

2. Eve is restricted to act on their
purifications individually. 

Thm. 1 implies that no separation between the guessing probabilities in the classical and quantum 
pictures can be seen under this restrictions.

[1] H. Dai, B. Chen, X. Zhang and X. Ma (2023), “Intrinsic randomness under general quantum measurements”, Phys. Rev. 

Research 5, 033081.  
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3. Finally, using tools from [2], we show that 𝐹𝑆
𝑥

𝑥 is not a convex combination of projective 

measurements.

[1] A. Tavakoli et al., “Bilocal Bell inequalities violated by the quantum elegant joint measurement”, Phys. Rev. Lett. 126, 220401 (2021).

[2] M. Oszmaniec et al., “Simulating positive-operator-valued measures with projective measurements”, Phys. Rev. Lett. 119, 190501 (2017).
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Discussion

• Characterize the set of states and measurements for which the classical and quantum 
pguesses coincide.

• Find ways to compute (or to, at least, computably approximate from above) 
𝑝𝑔𝑢𝑒𝑠𝑠 𝑋 𝐸, 𝜌𝑆, 𝑀𝑆

𝑥
𝑥 .
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𝑥 is not a convex combination of projective measurements, then, in 
order to measure it, one necessarily must implement a Naimark dilation.

• The information about the dilation is not being given to classical Eve. Therefore, it seems 
to make sense that her guessing probability is below that of quantum Eve.

• However, that cannot be the whole explanation, because this already happens in the 
setting of pure states in which we do have equality. 
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