Vertex-minor universal graphs for generating entangled quantum subsystems

Maxime Cautr`es, Nathan Claudet, Mehdi Mhalla, Simon Perdrix, Valentin Savin, Stéphan Thomassé

[Basic definitions](#page-1-0)

Graphs

Definition (Graph)

A graph $G = (V, E)$ is composed of a set of vertices V and a set of edges E. Here, the graphs are undirected (no directed edge) and simple (no self-loop and at most one edge per pair of vertices).

Graph states

Definition (Graph state)

Given a graph $G = (V, E)$, the corresponding graph state $|G\rangle$ is the quantum state $\sqrt{ }$ \setminus

$$
|G\rangle = \left(\prod_{(u,v)\in E} CZ_{u,v}\right)|+\rangle_V
$$

$$
|G\rangle = CZ_{0,1} (|+\rangle_0 \otimes |+\rangle_1)
$$

= $\frac{1}{2} (|00\rangle + |01\rangle + |10\rangle - |11\rangle)$

[The power of local operations on graph states](#page-4-0)

Can we create an EPR-pair between any two nodes using only local operations (and classical communication)?

Can we create an EPR-pair between any two nodes using only local operations (and classical communication)?

Yes, if (and only if) the graph is connected.

Can we create an EPR-pair between any two nodes using only local operations (and classical communication)?

Yes, if (and only if) the graph is connected.

Natural question: What if we want to create any arbitrary graph state between any nodes?

[A graphical counterpart for local operations on](#page-19-0) [graph states](#page-19-0)

Correspondence between graph states and graphs

local (i.e. single-qubit) quantum operations *

vertex deletions & local complementations

Local complementation

Definition

A local complementation on a vertex u consists in complementing the (open) neighborhood of u.

Local complementation

Definition

A local complementation on a vertex u consists in complementing the (open) neighborhood of u.

Local complementation

Definition

A local complementation on a vertex u consists in complementing the (open) neighborhood of u.

Vertex-minors

Definition (Vertex-minor)

Given two graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ such that $V_H \subseteq V_G$, H is a vertex-minor of G if H can be obtained as a induced subgraph of G by means of local complementations.

Vertex-minors

Definition (Vertex-minor)

Given two graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$ such that $V_H \subseteq V_G$, H is a vertex-minor of G if H can be obtained as a induced subgraph of G by means of local complementations.

Definition

A graph G is k-vertex-minor universal if any graph on any k vertices is a vertex-minor of G.

 C_6 is 3-vertex-minor universal.

To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1.

 C_6 is 3-vertex-minor universal.

To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1.

 $C₆$ is 3-vertex-minor universal.

To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1. To induce the empty graph on $\{0, 1, 2\}$: Local complementation on 0,

 $C₆$ is 3-vertex-minor universal.

To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1. To induce the empty graph on $\{0, 1, 2\}$: Local complementation on 0, on 5,

 $C₆$ is 3-vertex-minor universal.

To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1. To induce the empty graph on $\{0, 1, 2\}$: Local complementation on 0, on 5, on 2,

 $C₆$ is 3-vertex-minor universal.

To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1. To induce the empty graph on $\{0, 1, 2\}$: Local complementation on 0, on 5, on 2, on 3.

 $C₆$ is 3-vertex-minor universal.

To induce the complete graph on $\{0, 1, 2\}$: Local complementation on 1. To induce the empty graph on $\{0, 1, 2\}$: Local complementation on 0, on 5, on 2, on 3.

Proposition

If G is k-vertex-minor universal, any graph state on any k qubits of $|G\rangle$ can be induced by local operations and classical communication.

Vertex-minor universality generalizes **pairability**, a notion introduced by Sergey Bravyi, Yash Sharma, Mario Szegedy, Ronald de Wolf in "Generating k EPR-pairs from an n-party resource state" (2022).

Definition

A quantum state is said k -pairable if any k EPR-pairs on any 2k qubits can be induced can be induced by local operations and classical communication.

For an arbitrary k, existence of k-vertex-minor universal graphs ?

For an arbitrary k, existence of k-vertex-minor universal graphs ? Of reasonable size ?

For an arbitrary k, existence of k-vertex-minor universal graphs ? Of reasonable size ?

A lower bound:

Proposition

A k-vertex-minor universal graph is of order $\Omega(k^2)$.

For an arbitrary k, existence of k-vertex-minor universal graphs ? Of reasonable size ?

A lower bound:

Proposition

A k-vertex-minor universal graph is of order $\Omega(k^2)$.

Proof.

- Given a fixed set of k vertices, there are at most 3^{n-k} vertex-minors up to local complementation.
- There are $\Omega(2^{k^2})$ different graphs of order k up to local complementation.

[Random construction of](#page-44-0) k-vertex-minor universal graphs of order $\Theta(k^2)$

Outline of the construction

Random bipartite graph $G = (L \cup R, E)$ (the probability of an edge existing between L and R is 1/2). $|L| = \Theta(k \ln(k))$, $|R| = \Theta(k^2)$.

Given any fixed set of k vertices:

Given any fixed set of k vertices:

- 1 Move every vertex to the left by means of pivoting.
- 2 Check if the incidence matrix if of full rank.

Also: an explicit construction of order $\Theta(k^4)$

There is an explicit construction of k-vertex-minor universal graphs of order $\Theta(k^4)$ based on projective planes.

 G_q : bipartite incidence graph graph of $PG(2, q)$

[Summary](#page-53-0)

- Probabilistic construction of order $\Theta(k^2)$.
- Explicit construction of order $O(k^4)$.

Future directions:

- Probabilistic construction of order $\Theta(k^2)$.
- Explicit construction of order $O(k^4)$.

Future directions:

 \bullet Better explicit construction of *k*-vertex-minor universal graphs.

- Probabilistic construction of order $\Theta(k^2)$.
- Explicit construction of order $O(k^4)$.

Future directions:

- \bullet Better explicit construction of *k*-vertex-minor universal graphs.
- What if we allow more than 1 qubit per party?

- Probabilistic construction of order $\Theta(k^2)$.
- Explicit construction of order $O(k^4)$.

Future directions:

- \bullet Better explicit construction of *k*-vertex-minor universal graphs.
- What if we allow more than 1 qubit per party ?
- What about noise?

Thanks

arXiv:2402.06260