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Basic definitions
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Graphs

Definition (Graph)

A graph G = (V ,E ) is composed of a set of vertices V and a set of edges
E . Here, the graphs are undirected (no directed edge) and simple (no
self-loop and at most one edge per pair of vertices).
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Graph states

Definition (Graph state)

Given a graph G = (V ,E ), the corresponding graph state |G ⟩ is the
quantum state

|G ⟩ =

 ∏
(u,v)∈E

CZu,v

 |+⟩V

0

1
|G ⟩ = CZ0,1 (|+⟩0 ⊗ |+⟩1)

=
1

2
(|00⟩+ |01⟩+ |10⟩ − |11⟩)
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The power of local operations on graph states
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Quantum communication networks
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Quantum communication networks
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Problem: Generating arbitrary graph states

Can we create an EPR-pair between any two nodes using only local
operations (and classical communication)?

Yes, if (and only if) the graph is connected.

Natural question: What if we want to create any arbitrary graph state
between any nodes?
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Creating graph states
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A graphical counterpart for local operations on

graph states
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Correspondence between graph states and graphs

0

1 2

3 0

1 2

|G ⟩ G

local (i.e. single-qubit)

quantum operations *

vertex deletions

& local complementations

√
Z -gate Z -measurement

√
Z -gate

√
X -gate
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Local complementation

Definition

A local complementation on a vertex u consists in complementing the
(open) neighborhood of u.

0

1

2

3

4

0

1

2

3

4



11/24

Local complementation

Definition

A local complementation on a vertex u consists in complementing the
(open) neighborhood of u.

0

1

2

3

4

0

1

2

3

4



11/24

Local complementation

Definition

A local complementation on a vertex u consists in complementing the
(open) neighborhood of u.

0

1

2

3

4 0

1

2

3

4



12/24

Vertex-minors

Definition (Vertex-minor)

Given two graphs G = (VG ,EG ) and H = (VH ,EH) such that VH ⊆ VG ,
H is a vertex-minor of G if H can be obtained as a induced subgraph of G
by means of local complementations.

0

1 2

3 0

1 2

3 0

2

3

G = = H
local

complementation
on 1

induced
subgraph

Definition

A graph G is k-vertex-minor universal if any graph on any k vertices is a
vertex-minor of G .
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k-vertex-minor universal graphs : example 1

K3 is 2-vertex-minor universal.
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k-vertex-minor universal graphs : example 2

C6 is 3-vertex-minor universal.

4 3

5 2

0 1

To induce the complete graph on {0, 1, 2} : Local complementation on 1.
To induce the empty graph on {0, 1, 2} : Local complementation on 0, on
5, on 2, on 3.
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Quantum counterpart

Proposition

If G is k-vertex-minor universal, any graph state on any k qubits of |G ⟩
can be induced by local operations and classical communication.
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Related work: pairability

Vertex-minor universality generalizes pairability, a notion introduced by
Sergey Bravyi, Yash Sharma, Mario Szegedy, Ronald de Wolf in
”Generating k EPR-pairs from an n-party resource state” (2022).

Definition

A quantum state is said k-pairable if any k EPR-pairs on any 2k qubits
can be induced can be induced by local operations and classical
communication.
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An upper bound on k-vertex-minor universality

For an arbitrary k, existence of k-vertex-minor universal graphs ?

Of
reasonable size ?

A lower bound:

Proposition

A k-vertex-minor universal graph is of order Ω(k2).

Proof.

Given a fixed set of k vertices, there are at most 3n−k vertex-minors
up to local complementation.

There are Ω(2k
2
) different graphs of order k up to local

complementation.
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Random construction of k-vertex-minor

universal graphs of order Θ(k2)
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Outline of the construction

Random bipartite graph G = (L ∪ R,E ) (the probability of an edge
existing between L and R is 1/2). |L| = Θ(k ln(k)), |R| = Θ(k2).

...
...



20/24

Proof of vertex-minor universality: greedy algorithm

Given any fixed set of k vertices:

1 - Move every vertex to the left by means of pivoting.

2 - Check if the incidence matrix if of full rank.

...
...

v2

v3

v1

v1 

0 0 0
0 0 0
...

...
...

1 1 1
0 0 1
0 0 0



(v1, v2) (v1, v3) (v2, v3)
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Also: an explicit construction of order Θ(k4)

There is an explicit construction of k-vertex-minor universal graphs of
order Θ(k4) based on projective planes.

u1

u2

u3

α1

PG(2, q): projective plane over Fq

u1

u2

u3

α1

Gq : bipartite incidence graph
graph of PG(2, q)
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k-vertex-minor universal graphs:

Probabilistic construction of order Θ(k2).

Explicit construction of order O(k4).

Future directions:

Better explicit construction of k-vertex-minor universal graphs.

What if we allow more than 1 qubit per party ?

What about noise ?



23/24

Summary

k-vertex-minor universal graphs:

Probabilistic construction of order Θ(k2).

Explicit construction of order O(k4).

Future directions:

Better explicit construction of k-vertex-minor universal graphs.

What if we allow more than 1 qubit per party ?

What about noise ?



23/24

Summary

k-vertex-minor universal graphs:

Probabilistic construction of order Θ(k2).

Explicit construction of order O(k4).

Future directions:

Better explicit construction of k-vertex-minor universal graphs.

What if we allow more than 1 qubit per party ?

What about noise ?



23/24

Summary

k-vertex-minor universal graphs:

Probabilistic construction of order Θ(k2).

Explicit construction of order O(k4).

Future directions:

Better explicit construction of k-vertex-minor universal graphs.

What if we allow more than 1 qubit per party ?

What about noise ?



24/24

Thanks

arXiv:2402.06260
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