Variational Quantum Dynamics Simulation

Dr. Christa Zoufal Research Scientist

ouf@zurich.ibm.com

WAQ / YQIS - Paris 2024

Quantum Time Evolution

Quantum Real Time Evolution

Solve PDEs via Schrödingerisation (such as heat equations)

Quantum Imaginary Time Evolution

Finding the ground state of Hamiltonian H [3] Prepare a Gibbs state for a given Hamiltonian H [4] Solve PDEs (such as Black Scholes model) [5, 6]

[1] Quantum algorithm for simulating real time evolution of lattice Hamiltonians, J. Haah et al.

[2] Simulating quantum many-body dynamics on a current digital quantum computer, A. Smith et al.

[3] Variational ansatz-based quantum simulation of imaginary time evolution, S. McArdle, et al.

[4] Variational Quantum Boltzmann Machines, C. Zoufal et al.

[5] Quantum option pricing using Wick rotated imaginary time evolution, S. K. Radha

[6] Variational quantum simulations of stochastic differential equations, K. Kubo et al.

Study of real time dynamics for many-body physics systems, behavior under specific potential, etc. [1, 2, etc.]

Quantum Time Evolution

Quantum Real Time Evolution

Schrödinger Equation

 $i \frac{\partial |\psi(t)|}{\partial t}$

 $|\psi(t)\rangle$

Quantum Imaginary Time Evolution

 $\frac{\partial |\psi(t)\rangle}{\partial t} =$ Schrödinger Equation

 $|\psi(t)
angle = \frac{1}{\sqrt{Tr^{f}}}$

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

$$H = \sum_{i} \theta_{i} h_{i}$$
$$H \rightarrow \frac{H}{\hbar}$$

$$E_t = \langle \psi(t) | H | \psi(t) \rangle$$

$$\frac{\langle t \rangle \rangle}{t} = H |\psi(t)\rangle$$

$$\psi = e^{-iHt} |\psi(0)\rangle$$

$$= (E_t - H) |\psi(t)\rangle$$

$$\frac{e^{-Ht}}{\left[e^{-2Ht}|\psi(0)\rangle\langle\psi(0)|\right]}\left|\psi(0)\rangle\right.$$

• Suppose *H*.

• Suppose $H = H_1 + H_2$.

• Suppose $H = H_1 + H_2$. If $[H_1, H_2] = 0$, we can add the circuits for e^{-iH_1t} and e^{-iH_2t} in sequence

in general!

• Suppose $H = H_1 + H_2$. If $[H_1, H_2] = 0$, we can add the circuits for e^{-iH_1t} and e^{-iH_2t} in sequence

Otherwise, decreasing the time to t/k and repeating the • sequence k times achieves a better approximation

k := number of **Trotter steps**

in general!

 $+\mathcal{O}(t^2/k)$

 $S_1^k\left(\frac{t}{t}\right) =:$ Lie-Trotter

- Higher order PFs: $S_{2\chi}^k\left(\frac{k}{t}\right) = e^{-iHt} + O\left(t\left(\frac{t}{k}\right)^{2\chi}\right)$
- Example: 2nd order PF: $S_2^k = \left(e^{-iH_1\frac{t}{2k}}e^{-iH_2\frac{t}{k}}e^{-iH_1\frac{t}{2k}}\right)$

Trotter-Suzuki

Minimize cost

$$e^{(A+B)} = \lim_{\chi \to \infty} \left(e^{(A/\chi)} e^{(B/\chi)} \right)$$

$$\bar{k}^{k} = e^{-iHt} + \mathcal{O}\left(\frac{t^{3}}{k^{2}}\right)$$

Product Formulas for Imaginary Time Dynamics

• combination of unitary operators [1]

$$e^{-\beta H/2} = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} dy \ e^{-\frac{y^2}{2}} e^{-iy\sqrt{\beta H}}$$

Requires the identification of \sqrt{H} or at least \widetilde{H} such that $\widetilde{H}^2 = H$

For a geometric k-local $H = \sum_i \theta_i h_i$ one can apply a Trotter decomposition as

$$e^{-\beta H} = \left(e^{-\Delta \tau \theta_0 h_0}\right)$$

Approximate individual non-unitary transformations with unitary transformations $e^{-i\Delta\tau A}$ [2] Expand A in the Pauli basis \rightarrow fit coefficients via solving a linear system to approx. the imaginary dynamics. Method cost generally scales **exponentially** in the **correlation** length

[1] Quantum algorithms with applications to simulating physical systems, A. Ch. N. Chowdhury [2] Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution, M. Motta et al. IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

By using the Hubbard-Stratonovich transformation for positive semidefinite H one can achieve a linear

 $(\partial e^{-\Delta \tau \theta_1 h_1} \dots)^{\frac{\beta}{\Delta \tau}} + \mathcal{O}(\Delta \tau)$

Exciting Times

- Simulation of an Ising model on 127 qubits
- Proof that error mitigation techniques work in practice
- Not yet a quantum advantage since sophisticated \bullet classical methods (tensor networks) exist for Ising models

We are getting close to showing a quantum advantage and doing useful things

10

Exciting Times

Chemistry Beyond Exact Solutions on a Quantum-Centric Supercomputer

Javier Robledo-Moreno, Mario Motta, Holger Haas, Ali Javadi-Abhari, Petar Jurcevic, William Kirby, Simon Martiel, Kunal Sharma, Sandeep Sharma, Tomonori Shirakawa, Iskandar Sitdikov, Rong-Yang Sun, Kevin J. Sung, Maika Takita, Minh C. Tran, Seiji Yunoki, Antonio Mezzacapo

- Upper bounds guarantee an unconditional quality metric for quantum advantage \rightarrow certifiable by classical computers at polynomial cost
- Quantum circuits of up to 10570 (3590 2-qubit) quantum gates
 - N2 triple bond breaking (58 qubits)
 - Active-space electronic structure of [2Fe-2S] (45 qubits)
 - Active-space electronic structure of [4Fe-4S] clusters (77 qubits)

Combining powerful classical and quantum resources!

 \rightarrow up to 6400 nodes of the supercomputer Fugaku + a Heron superconducting quantum processor

IBM Quantum

arXiv:2405.05068

Good approximate solutions to electronic structure calculations beyond exact diagonalization

Quantum Advantage

Solve a *practically relevant* problem faster or better than any known classical algorithm on the best classical computer

- Fighting noise: (1)better error correction / fault-tolerance
- Finding new problems: (2)new quantum algorithms

IBM Quantum

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical"

Quantum hardware requirements

Variational Quantum Algorithms

Paradigm

Approximate the solution with a parameterized state

$$|\Psi\rangle \approx |\phi(\theta)\rangle, \ \theta \in \mathbb{R}^d$$

with $|\phi(\theta)\rangle = U(\theta)|0\rangle$ acting in the device's capabilities.

Ground-state preparation

$$E_0 \approx \min_{\theta} \langle \phi(\theta) | H | \phi(\theta) \rangle$$

Variational Quantum Time Evolution

Approach:

- State evolution \rightarrow Parameter evolution with McLachlan [1]

Properties:

- Ensures that $\omega \in \mathbb{R}$
- In the case of real time evolution not necessarily energy preserving
- Unlike PFs: circuit depth does not (necessarily) increase with the number time-steps and the locality of the system

[1] A variational solution of the time-dependent Schrödinger equation, A. McLachlan

$$H = \sum_{i} \theta_{i} h_{i}$$

Variational Ansatz $|\psi_{\boldsymbol{\omega}}(t)\rangle = U(\boldsymbol{\omega}(t))|0\rangle$

• Minimize the error between the variational trajectory and the actual gradient using a constant depth Ansatz

McLachlan's Variational Principle

Quantum Real Time Evolution → VarQRTE

 $\delta \left\| \left(i \frac{\partial}{\partial t} - \right) \right\|$

Quantum Imaginary Time Evolution → VarQITE

 $\delta \left\| \left(\frac{\partial}{\partial t} + H - \right) \right\|$

$$H = \sum_{i} \theta_{i} h_{i}$$

Variational Ansatz $|\psi_{\boldsymbol{\omega}}(t)\rangle = U(\omega(t))|0\rangle$

$$-H\left(\psi_{\boldsymbol{\omega}}(t)\right)\right\|_{2}=0$$

$$\left\|E_{t}\right\|\psi_{\boldsymbol{\omega}}(t)\right\|_{2}=0$$

Derivation for VarQRTE

Let's move to the blackboard

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

18

McLachlan's Variational Principle

Quantum Real Time Evolution

$$\delta \left\| \left(i \frac{\partial}{\partial t} - H \right) |\psi_{\omega}(t)\rangle \right\|_{2} = 0$$

$$\operatorname{Re} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} \frac{\partial |\psi_{\omega}(t)\rangle}{\partial \omega_{j}} - \frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} |\psi_{\omega}(t)\rangle \langle \psi_{\omega}(t)| \frac{\partial |\psi_{\omega}(t)\rangle}{\partial \omega_{j}} \right) \dot{\omega}_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi(t)\rangle - \frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} |\psi_{\omega}(t)\rangle \langle \psi_{\omega}(t)| H |\psi_{\omega}(t)\rangle \right) \left(\frac{\partial |\psi_{\omega}(t)\rangle}{\partial \omega_{j}} \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi(t)\rangle - \frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} |\psi_{\omega}(t)\rangle \langle \psi_{\omega}(t)| H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi(t)\rangle - \frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} |\psi_{\omega}(t)\rangle \langle \psi_{\omega}(t)| H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi(t)\rangle - \frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} |\psi_{\omega}(t)\rangle \langle \psi_{\omega}(t)| H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi(t)\rangle - \frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} |\psi_{\omega}(t)\rangle \langle \psi_{\omega}(t)| H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi(t)\rangle - \frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} |\psi_{\omega}(t)\rangle \langle \psi_{\omega}(t)| H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi(t)\rangle - \frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} |\psi_{\omega}(t)\rangle \langle \psi_{\omega}(t)| H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle - \frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} |\psi_{\omega}(t)\rangle \langle \psi_{\omega}(t)| H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle - \frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle - \frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t)\rangle \right) d\omega_{j} = \operatorname{Im} \left(\frac{\partial \langle \psi_{\omega}(t)|}{\partial \omega_{i}} H |\psi_{\omega}(t$$

Quantum Imaginary Time Evolution

$$\delta \left\| \left(\frac{\partial}{\partial t} + H - E_t \right) |\psi_{\boldsymbol{\omega}}(t)\rangle \right\|_2 = 0$$

$$\operatorname{Re}\left(\frac{\partial\langle\psi_{\boldsymbol{\omega}}(t)|}{\partial\omega_{i}}\frac{\partial|\psi_{\boldsymbol{\omega}}(t)\rangle}{\partial\omega_{j}} - \frac{\partial\langle\psi_{\boldsymbol{\omega}}(t)|}{\partial\omega_{i}}|\psi_{\boldsymbol{\omega}}(t)\rangle\langle\psi(t)|\frac{\partial|\psi_{\boldsymbol{\omega}}(t)\rangle}{\partial\omega_{j}}\right)\dot{\omega}_{j} = -\operatorname{Re}\left(\frac{\partial\langle\psi_{\boldsymbol{\omega}}(t)|}{\partial\omega_{i}}H|\psi_{\boldsymbol{\omega}}(t)\rangle\right)$$

$$H = \sum_{i} \theta_{i} h_{i}$$

Variational Ansatz $|\psi_{\boldsymbol{\omega}}(t)\rangle = U(\omega(t))|0\rangle$

McLachlan's Variational Principle

Quantum Real Time Evolution

Quantum Geometric Tensor (QGT) $\longrightarrow F_{ij}^Q \dot{\omega}_j = \operatorname{Im} \left(C_i \right)$ prop. to the Quantum Fisher Information (QFI)

Quantum Imaginary Time Evolution

 $\left\| \left(\frac{\partial}{\partial t} + H - \right) \right\|$

$$H = \sum_{i} \theta_{i} h_{i}$$

Variational Ansatz $|\psi_{\boldsymbol{\omega}}(t)\rangle = U(\boldsymbol{\omega}(t))|0\rangle$

Real
$$i \frac{\partial |\psi(t)\rangle}{\partial t} = H |\psi|$$

Imaginary $\frac{\partial |\psi(t)\rangle}{\partial t} = (E_t - H) |\psi(t)\rangle$

$$\delta \left\| \left(i \frac{\partial}{\partial t} - H \right) |\psi_{\omega}(t)\rangle \right\|_{2} = 0$$

$$G_i - \frac{\partial \langle \psi_{\boldsymbol{\omega}}(t) |}{\partial \omega_i} |\psi_{\boldsymbol{\omega}}(t) \rangle E_t$$

$$E_t \Big) |\psi_{\boldsymbol{\omega}}(t)\rangle \Big\|_2 = 0$$

 $F_{ij}^{Q}\dot{\omega_{j}} = -\operatorname{Re}(C_{i}) \propto \frac{\partial \langle E_{\omega}(t) \rangle}{\partial \omega_{i}}$ → Application to ground state search!

$(t)\rangle$

Quantum Geometric Tensor – Interpretation

Fisher Information in Noisy Intermediate-Scale Quantum Applications, J. J. Meyer, 2021

IBM Quantum

Slightly different notation...

F: fidelity g:QGT

What's the *distance* of the parameters?

Model-independent measure:

$$\left\|\boldsymbol{\theta}^{(0)}-\boldsymbol{\theta}^{(1)}\right\|_2$$

$$F(\boldsymbol{\theta}^{(0)}, \boldsymbol{\theta}^{(1)}) = \left| \langle \phi(\boldsymbol{\theta}^{(0)}) | \phi(\boldsymbol{\theta}^{(1)}) \rangle \right|^2$$

For $\delta\theta \rightarrow 0$, we can Taylor expand the fidelity

$$= F(\theta, \theta) + \delta \theta^{\top} \nabla_{\theta} F(\theta, \theta') \begin{vmatrix} 0 \\ + \frac{\delta \theta^{\top} \nabla_{\theta} \nabla_{\theta}^{\top} F(\theta, \theta') \delta \theta}{2} \end{vmatrix} + \mathcal{O}(\|\theta' = \theta) \\= 1 - \delta \theta^{\top} g(\theta) \delta \theta + \mathcal{O}(\|\delta \theta\|_{2}^{3})$$

the QGT captures the local model sensitivity to parameter changes

$\|oldsymbol{\delta}oldsymbol{ heta}\|_2^3)$

Numerical Solution to ODE

Variational Quantum Time Evolution (VarQTE) Ordinary Differential Equation (ODE)

Initial value problem (IVP)

VarQRTE

$$f_{\mathrm{std}}\left(oldsymbol{\omega}
ight)=\left(\mathcal{F}^{Q}
ight)^{-1}\mathrm{Im}\left(oldsymbol{C}$$

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

IBM Quantum

$$\dot{\boldsymbol{\omega}}(t) = f(t, \boldsymbol{\omega}(t))$$

 $\left(oldsymbol{C}-rac{\partial\left\langle\psi_{t}^{\omega}
ight|}{\partialoldsymbol{\omega}}\left|\psi_{t}^{\omega}
ight
angle E_{t}^{\omega}
ight)$

VarQITE
$$f_{\mathrm{std}}(\boldsymbol{\omega}) = -\left(\mathcal{F}^Q\right)^{-1} \operatorname{Re}\left(C_i\right)$$

State evolution \rightarrow Parameter evolution

Residual Errors

Quantum Real Time Evolution

$$H = \sum_{i} \theta_{i} h_{i}$$

Variational Ansatz $|\psi_{\boldsymbol{\omega}}(t)\rangle = U(\omega(t))|0\rangle$

Quantum Imaginary Time Evolution

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

$$\||e_t\rangle\|_2 = \left\|\left(i\frac{\partial}{\partial t} - H\right)|\psi_{\omega}(t)\rangle\right\|_2$$

$$\||e_t\rangle\|_2 = \left\|\left(\frac{\partial}{\partial t} + H - E_t\right)|\psi_{\omega}(t)\rangle\right\|_2$$

Derivation for the VarQRTE Error Bound

Let's move to the blackboard

24

Residual Errors

Quantum Real Time Evolution

$$H = \sum_{i} \theta_{i} h_{i}$$

$$\||e_t\rangle\|_2^2 =$$

Variational Ansatz $|\psi_{\boldsymbol{\omega}}(t)\rangle = U(\omega(t))|0\rangle$

Quantum Imaginary Time Evolution

$$\||e_t\rangle\|_2 = \left\|\left(i\frac{\partial}{\partial t} - H\right)|\psi_{\omega}(t)\rangle\right\|_2$$

$$= \sum_{i} \sum_{j} \dot{\omega}_{i} \dot{\omega}_{j} F_{ij}^{Q} - 2 \sum_{i} \dot{\omega}_{i} Im \left(C_{i} - \frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_{i}} | \psi_{\omega}(t) \rangle E_{t} \right) + Var(H)_{t}$$

$$\||e_t\rangle\|_2 = \left\|\left(\frac{\partial}{\partial t} + H - E_t\right)|\psi_{\omega}(t)\rangle\right\|_2$$

$$\||e_t\rangle\|_2^2 = \sum_i \sum_j \dot{\omega}_i \, \dot{\omega}_j F_{ij}^Q + 2 \sum_i \dot{\omega}_i \operatorname{Re}(C_i) + \operatorname{Var}(H)_t$$

$$\operatorname{Var}(H)_{t} = \langle \psi_{\omega}(t) | H^{2} | \psi_{\omega}(t) \rangle - \langle \psi_{\omega}(t) | H | \psi_{\omega}(t) \rangle^{2}$$

Numerical Solution to ODE

Initial value problem (IVP)

VarQRTE $f_{ m std}\left(oldsymbol{\omega} ight) = \left(\mathcal{F}^Q ight)^{-1} { m Im}\left(oldsymbol{C} - rac{\partial\left\langle\psi_t^\omega ight|}{\partialoldsymbol{\omega}}\left|\psi_t^\omega ight angle E_t^\omega ight)$

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

IBM Quantum

VarQTE given as an Ordinary Differential Equation (ODE)

$$\dot{\boldsymbol{\omega}}(t) = f(t, \boldsymbol{\omega}(t))$$

VarQITE $f_{\mathrm{std}}\left(\boldsymbol{\omega}\right) = -\left(\mathcal{F}^{Q}\right)^{-1} \operatorname{Re}\left(C_{i}\right)$

$$f_{\min}\left(oldsymbol{\omega}
ight) = rgmin_{oldsymbol{\omega}\in\mathbb{R}^{k+1}} \|\ket{e_t}\|_2^2,$$
 $oldsymbol{\dot{\omega}}\in\mathbb{R}^{k+1}$

Alternative Variational Quantum Time Evolution Methods

Projected Variational Quantum Dynamics^[1] (pVQD)

$$|\psi_0\rangle - U(\boldsymbol{\theta}_t) - e^{-iH\delta t} - U(\boldsymbol{\theta}_{t+\delta t}) - |0\rangle\langle 0|$$

$$\min_{\boldsymbol{\theta}_{t+\delta t}} 1 - \left| \langle \psi(\boldsymbol{\theta}_{t+\delta t}) \left| e^{-iH\delta t} \left| \psi(\boldsymbol{\theta}_{t}) \right\rangle \right|$$

$$\begin{split} |\psi(\boldsymbol{\theta}_{t})\rangle &= U(\boldsymbol{\theta}_{t})|\psi_{0}\rangle \\ |\psi(\boldsymbol{\theta}_{t+\delta t})\rangle &= U(\boldsymbol{\theta}_{t+\delta t})|\psi_{0}\rangle \end{split}$$

For $\delta t \rightarrow 0$ pVQD is equivalent to VarQRTE

[1] An efficient quantum algorithm for the time evolution of parameterized circuits, Stefano Barison, et al. 2021 [2] Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution, M. Motta, et al. 2020

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

Variational & Trotterized Imaginary Time Evolution^[2] Geometric k-local $H = \sum_i \theta_i h_i$ $e^{-\beta H} = \left(e^{-\Delta \tau \theta_0 h_0} e^{-\Delta \tau \theta_1 h_1} \dots\right)^{\frac{\beta}{\Delta \tau}} + \mathcal{O}(\Delta \tau)$ After a single Trotter step $|\psi'\rangle = e^{-\Delta\tau\theta_m h_m} |\psi\rangle$ Unitary approximation $\left|\widetilde{\psi'}\right\rangle = \frac{\left|\psi'\right\rangle}{\left\|\left|\psi'\right\rangle\right\|} \approx e^{-i\Delta\tau A_m} \left|\psi\right\rangle, \qquad A_m = \sum_i a_m^i \sigma_i$ $\min \| |\psi'\rangle - (1 - i\Delta\tau i\Delta\tau A_m) |\psi\rangle \|_2$ $Sa_m = b$ $S_{k,l} = \langle \psi | \sigma_k \sigma_l | \psi \rangle \quad b_k = \frac{-i}{\sqrt{c}} \langle \psi | \sigma_k h_m | \psi \rangle$ $c = 1 - 2\Delta\tau \langle \psi | h_m | \psi \rangle + \mathcal{O}(\Delta\tau^2)$

Complexity

Number of measurements for a single time: $\mathcal{O}\left(e^{C^{d}}\right)$ with C correlation length, d: domain size

27

Now back to VarQTE...

28

How can we verify the preparation accuracy?

Bures Metric

Target state

 $|\psi^{*}(t)
angle$ $ho^*(t) = |\psi^*(t)\rangle\langle\psi^*(t)|$

Prepared variational state

 $|\psi(t)
angle$ $\rho(t) = |\psi(t)\rangle\langle\psi(t)|$ Fidelity

Further

If $\epsilon_t^2 \in [0, 2] \rightarrow F(\rho^*(t), \rho)$

→ Global phase independent

$$F(\rho^*(t),\rho(t)) = |\langle \psi(t)|\psi^*(t)\rangle|^2$$

$$B(\rho^*(t),\rho(t)) = \sqrt{2 - 2\sqrt{F(\rho^*(t),\rho(t))}} \le \epsilon_t$$

$$B(\rho^*(t),\rho(t)) = \min_{\phi} \left\| |\psi^*(t)\rangle - e^{i\phi} |\psi(t)\rangle \right\|_2$$

$$(t)\big) \ge \left(1 - \frac{\epsilon_t^2}{2}\right)^2$$

Errors

Target state

 $|\psi^{*}(t)
angle$ $\rho^*(t) = |\psi^*(t)\rangle\langle\psi^*(t)|$

Exact variational state

$$\begin{split} |\psi'(t)\rangle\\ \rho'(t) &= \big|\psi'^{(t)}\big\rangle\langle\psi'(t)\big| \end{split}$$

Prepared variational state

 $|\psi_{\boldsymbol{\omega}}(t)\rangle$ $\rho_{\omega}(t) = |\psi_{\omega}(t)\rangle\langle\psi_{\omega}(t)|$ What we want

IBM Quantum

$B(\rho^*(t), \rho_{\omega}(t)) \leq \epsilon_t$

ODE solution

approximation

Errors

Target state

 $|\psi^{*}(t)
angle$ $\rho^*(t) = |\psi^*(t)\rangle\langle\psi^*(t)|$

Exact variational state

$$\begin{split} |\psi'(t)\rangle\\ \rho'(t) &= \big|\psi'^{(t)}\big\rangle\langle\psi'(t)\big| \end{split}$$

Prepared variational state

 $|\psi_{\boldsymbol{\omega}}(t)\rangle$ $\rho_{\omega}(t) = |\psi_{\omega}(t)\rangle\langle\psi_{\omega}(t)|$ What we want

IBM Quantum

$B(\rho^*(t), \rho_{\omega}(t)) \leq \epsilon_t$

VarQTE Error Bounds

Target state

$$|\psi^*(t)
angle$$

 $ho^*(t) = |\psi^*(t)
angle \langle \psi^*(t)|$

Prepared variational state

$$\begin{split} |\psi_{\omega}(t)\rangle\\ \rho_{\omega}(t) &= |\psi_{\omega}(t)\rangle\langle\psi_{\omega}(t)| \end{split}$$

$$B(\rho^*(t), \rho_{\omega}(t)) \leq \epsilon_t$$

$$\epsilon_t = \int_{\tau=0}^t |||e_\tau\rangle||_2 \, d\tau$$

Error Bounds Derivation

Let's move to the blackboard

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

34

What about the ODE implementation?

35

Solving the IVP

Making the right choices when solving the different components of the system is imperative for a successful VarQTE simulation.

Methods

Least squares \rightarrow more stable

Regularized least squares, e.g., eigenvalue cut-off or ridge -> even more stable but possibly unphysical

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

$$x = g^{-1}b$$

Exact inversion ideally g is always invertible if all parameters are linearly independent \rightarrow not true for sampled app

 $min_x \|b - gx\|$

 $min_x \|b - gx\| + \lambda \|f\|$

Solving the Ordinary Differential Equation

Main ODE solvers:

- Euler
- Runge-Kutta

Solving the Ordinary Differential Equation

Main ODE solvers:

- Euler
- Runge-Kutta

Explicit methods: Calculation of update by using the system state at the current time.Pro: Simple to evaluateCon: For stiff problems the time steps become impracticallysmall

 \rightarrow Evolve $\vec{\omega}$ (τ) e.g. with explicit Euler

 $\vec{\omega}(\tau) \simeq \vec{\omega}(\tau - \delta \tau) + \dot{\vec{\omega}}(\tau - \delta \tau)\delta \tau$

Solving the Ordinary Differential Equation

Main ODE solvers:

- Euler
- Runge-Kutta

Explicit methods: Calculation of update by using the system state at the current time. **Pro:** Simple to evaluate **Con:** For stiff problems the time steps become impractically small

 \rightarrow Evolve $\vec{\omega}$ (τ) e.g. with explicit Euler

 $\vec{\omega}(\tau) \simeq \vec{\omega}(\tau - \delta \tau) + \dot{\vec{\omega}}(\tau - \delta \tau)\delta \tau$

Implicit methods: Calculation of update by using the system state at the current time and for a time that lies in the future of the current time. **Pro:** Can improve numerical stability **Con:** Expensive evaluation

 \rightarrow Evolve $\vec{\omega}$ (τ) e.g. with implicit Euler

 $\vec{\omega}(\tau) \simeq \vec{\omega}(\tau - \delta \tau) + \dot{\vec{\omega}}(\tau)\delta \tau$

VarQRTE **Error Bound**

Open chain transverse field Ising model on 3 qubits

$$H = 0.5 \left(\sum_{ij} Z_i Z_j - 0.5 \sum_i X \right)$$

EfficientSU2(3, reps = 1)

t = 1

 $|\psi(0)\rangle = e^{-i\gamma}|000\rangle$

Runge Kutta **f**_{std} State Error $B(|\psi_t^\omega\rangle,|\psi_t^*\rangle)$ 0.10 ε_t 0.08 L 90.0 0.04 0.02 0.00 0.4 0.2 0.6 8.0 0.0 time **Runge Kutta f**_{res} State Error $B(|\psi_t^\omega\rangle,|\psi_t^*\rangle)$ 0.10 $\boldsymbol{\varepsilon}_t$ 80.0 0.06 0.06 error 0.04 0.02 0.00 0.2 0.6 0.8 0.4 0.0

time

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

VarQITE **Error Bound** Hydrogen [1]

H = 0.2252 II + 0.5716 ZZ +0.3435 IZ - 0.4347 ZI + 0.091 YY + 0.091 XX

EfficientSU2(2, reps = 1)

t = 1

 $|\psi(0)\rangle = |+\rangle \otimes |+\rangle$

Runge Kutta

fstd

State Error

[1] Variational ansatz-based quantum simulation of imaginary time evolution - S. McArdle, et al

What about the trainability?

Trainability of Variational Time Evolution

$$\mathcal{L}(\theta) = 1 - \left| \langle \psi_0 \middle| U^{\dagger}(\theta) e^{-iH\delta t} U(\theta^*) \middle| \psi_0 \rangle \right|$$

\rightarrow In the limit pVQD and VarQTE are equivalent

Variational quantum simulation: a case study for understanding warm starts, R. Puig-i-Valls, M. Drudis, et al. 2024

Conditions sufficed

- 1. Non-vanishing variance in poly large surrounding region
- 2. $(\epsilon$ -)Convexity guarantees for poly large time steps

Complexity

VarQTE Complexity

$$\operatorname{Im}\left(C_{i} - \frac{\partial \langle \psi_{\boldsymbol{\omega}}(t) |}{\partial \omega_{i}} | \psi_{\boldsymbol{\omega}}(t)\right)$$

$$F_{ij}^{Q} = \left(\frac{\partial \langle \psi_{\omega}(t) | \frac{\partial |\psi_{\omega}(t) \rangle}{\partial \omega_{i}} - \frac{\partial \langle \psi_{\omega}(t) | \frac{\partial |\psi_{\omega}(t) \rangle}{\partial \omega_{i}} |\psi_{\omega}(t) \rangle \langle \psi_{\omega}(t) | \frac{\partial |\psi_{\omega}(t) \rangle}{\partial \omega_{j}}\right) \in \mathbb{R}^{d \times d}$$

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

$$H = \sum_{i=0}^{m-1} \theta_i h_i$$

 $\boldsymbol{\omega} \in \mathbb{R}^d$

 $\rangle E_t$ and $\operatorname{Re}(C_i) \in \mathbb{R}^d$

Wall time for 300 iterations on IBMQ Montreal

How can we reduce this complexity?

Simultaneous Perturbation Stochastic Approximation (SPSA)

> Note: Does not apply to real time evolution

luantum

Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information Julien Gacon^{1,2}, Christa Zoufal^{1,3}, Giuseppe Carleo², and Stefan Woerner¹

[1] Spall. IEEE Transactions on Automatic Control 37(3) (1992)

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

Can we evaluate the QGT via SPSA?

Step 1

Step 2

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

IBM Quantum

Write QGT as Hessian $F_{ij}^{Q} = -\frac{1}{2} \partial \omega_{i} \partial \omega_{j} \left| \left\langle \psi(\omega'(t)) | \psi(\omega(t)) \right\rangle \right|^{2} \right|_{\omega' = \omega}$

Generalize SPSA for Hessians

Resource reduction

• Ising model with a transversal field (J = 0.5, h = 1)

$$H = J \sum_{i=1}^{n-1} Z_i Z_{i+1} + h \sum_{i=1}^n X_i$$

• Hardware-efficient ansatz with $L = \log(n)$

• Measure total number of shots M to achieve $\mathcal{I} \leq 0.05$

$$\begin{split} \mathcal{I} &= \frac{1}{T} \int_0^T \left(1 - |\langle \phi(\theta(\tau)) | \psi(\tau) \rangle|^2 \right) \mathrm{d}\tau \\ & \uparrow \\ & \text{exact solution} \end{split}$$

Resource reduction

• Ising model with a transversal field (J = 0.5, h = 1)

$$H = J \sum_{i=1}^{n-1} Z_i Z_{i+1} + h \sum_{i=1}^n X_i$$

• Hardware-efficient ansatz with $L = \log(n)$

- Measure total number of shots M to achieve $\mathcal{I} \leq 0.05$

$$\mathcal{I} = \frac{1}{T} \int_0^T \left(1 - |\langle \phi(\theta(\tau)) | \psi(\tau) \rangle|^2 \right) d\tau$$

$$\uparrow$$
exact solution

...or we employ classical shadows.

$$\operatorname{Im}\left(C_{i} - \frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_{i}} | \psi_{\omega}(t) \rangle E_{t}\right) \text{ and } \operatorname{Re}(C_{i}) \in \mathbb{R}^{d}$$
$$C_{i} = \frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_{i}} H | \psi_{\omega}(t) \rangle$$
$$2\operatorname{Re}(C_{i}) = \frac{\partial E_{t}}{\partial \omega_{i}}$$
$$E_{t} = \langle \psi_{\omega}(t) | H | \psi_{\omega}(t) \rangle$$

$$H = \sum_{i} \alpha_{i} \bigotimes_{j} \sigma_{ij}, \ \sigma_{ij} \in \{I, X, Y, Z\}$$

Shadows

Prediction of *M* observables with

 $O(\log M)$ measurements up to additive error

 \rightarrow Can also help to reduce the impact of shot noise ^[1]

[1] Measurement optimization of variational quantum simulation by classical shadow and derandomization,

K. Nakaji, S. Endo, Y. Matsuzaki, and H. Hakoshima

[2] Measurement optimization in the variational quantum eigensolver using a minimum clique cover, V. Verteletskyi, T.-C. Yen, and A. F Izmaylov.

[3] Efficient estimation of Pauli observables by derandomization, H.-Y. Huang, R. Kueng, and J. Preskill

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

IBM Quantum

(b)

Credits [1]

The evolutions of the infidelity $D_I(|\psi^{\text{target}}\rangle, |\psi_{\omega}\rangle)$ for each time step. (a) QITE for H_2 , (b) QRTE for H₂, (c) QITE with Heisenberg model Hamiltonian, and (d) ITE with LiH. For a bricklayer HEA with d=4, n=8

Largest degree first (LDF) grouping ^[2]: smart combination of Pauli terms to reduce number of required measurements Derandomization ^[3]: variant of classical shadows which aims at minimizing the confidence bound

Summary

- The power of the method strongly relies on

– Ansatz, ODE solver, IVP model choice

- Shot and hardware noise

- This will not be a universal solution but it would be great if we could find a relevant system with a good ansatz -> possibly better suited for **imaginary dynamics**

IBM Quantum

- VarQTE could help to model time dynamics for non-local Hamiltonians or longer times respectively

Algorithm and hardware development should go hand in hand

Resources

IBM Quantum Platform: https://quantum.ibm.com/ Access to quantum hardware and related information, e.g., about system noise, tutorials, learning platform, etc.

Qiskit Documentation: <u>https://docs.quantum.ibm.com/</u> How to build a circuit, transpile a circuit, debug, execute with simulators, or hardware, etc.

Qiskit Github: <u>https://github.com/qiskit</u> Code, building blocks, algorithms, etc. Special note to: <u>https://github.com/qiskit-community</u>

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

Thank you for your attention!

A big thank you also goes to my colleagues for all their work! → foundation for this lecture

Christa Zoufal Research Scientist

ouf@zurich.ibm.com

