Dr. Christa Zoufal Research Scientist

ouf@zurich.ibm.com

WAQ / YQIS - Paris 2024

IBM Quantum

Quantum Time Evolution

Quantum Real Time Evolution

Study of real time dynamics for many-body physics systems, behavior under specific potential, etc. [1, 2, etc.]

Finding the ground state of Hamiltonian H [3] Prepare a Gibbs state for a given Hamiltonian $H[4]$ Solve PDEs (such as Black Scholes model) [5, 6]

Solve PDEs via Schrödingerisation (such as heat equations)

Quantum Imaginary Time Evolution

[1] Quantum algorithm for simulating real time evolution of lattice Hamiltonians, J. Haah et al.

[2] Simulating quantum many-body dynamics on a current digital quantum computer, A. Smith et al.

[3] Variational ansatz-based quantum simulation of imaginary time evolution, S. McArdle, et al.

[4] Variational Quantum Boltzmann Machines, C. Zoufal et al.

[5] Quantum option pricing using Wick rotated imaginary time evolution, S. K. Radha

[6] Variational quantum simulations of stochastic differential equations, K. Kubo et al.

Quantum Time Evolution

Quantum Real Time Evolution

Schrödinger Equation

 $i\frac{\partial |\psi(t)|}{\partial t}$

 $|\psi(t)\rangle$

Quantum Imaginary Time Evolution

 $\frac{\partial |\psi(t)\rangle}{\partial t}$ = ∂t Wick-rotated Schrödinger Equation

 $|\psi(t)\rangle = \frac{1}{\sqrt{Tr^{\dagger}}}$

$$
H = \sum_{i} \theta_{i} h_{i}
$$

$$
H \rightarrow \frac{H}{\hbar}
$$

$$
E_t = \langle \psi(t) | H | \psi(
$$

$$
\frac{\langle t)\rangle}{\langle t\rangle}=H\left|\psi(t)\right\rangle
$$

$$
=e^{-iHt}|\psi(0)\rangle
$$

$$
= (E_t - H) | \psi(t) \rangle
$$

$$
\frac{e^{-Ht}}{\left[e^{-2Ht}|\psi(0)\rangle\langle\psi(0)|\right]}\left|\psi(0)\right\rangle
$$

 $\mathbf{3}$

 \bullet Suppose H .

• Suppose $H = H_1 + H_2$.

 $5\overline{)}$

• Suppose $H = H_1 + H_2$. If $[H_1, H_2] = 0$, we can add the circuits for e^{-iH_1t} and e^{-iH_2t} in sequence

in general!

6

• Suppose $H = H_1 + H_2$. If $[H_1, H_2] = 0$, we can add the circuits for e^{-iH_1t} and e^{-iH_2t} in sequence

Otherwise, decreasing the time to t/k and repeating the \bullet sequence k times achieves a better approximation

 $k \coloneqq$ number of Trotter steps

in general!

 $+O(t^2/k)$

 $S_1^k\left(\frac{t}{k}\right) =:$ Lie-Trotter

-7

- Higher order PFs: $S_{2\chi}^k \left(\frac{k}{t} \right) = e^{-iHt} + \mathcal{O}\left(t \left(\frac{t}{k} \right)^{2\chi} \right)$
- Example: 2^{nd} order PF: $S_2^k = \left(e^{-iH_1} \frac{t}{2ke} iH_2 \frac{t}{ke} iH_1 \frac{t}{2ke} \right)$

Trotter-Suzuki

Minimize cost

$$
e^{(A+B)} = \lim_{\chi \to \infty} \left(e^{(A/\chi)} e^{(B/\chi)} \right)
$$

$$
(\overline{k})^k = e^{-iHt} + \mathcal{O}\left(\frac{t^3}{k^2}\right)
$$

How to improve accuracy? 1. Increase k 2. Increase χ

Product Formulas for Imaginary Time Dynamics

9

• By using the Hubbard-Stratonovich transformation for positive semidefinite H one can achieve a linear combination of unitary operators [1]

$$
e^{-\beta H/2} = \sqrt{\frac{1}{2\pi}} \int_{-\infty}^{\infty} dy \, e^{-\frac{y^2}{2}} e^{-iy\sqrt{\beta H}}
$$

Requires the identification of \sqrt{H} or at least \widetilde{H} such that $\widetilde{H}^2 = H$

• For a geometric k-local $H = \sum_i \theta_i h_i$ one can apply a Trotter decomposition as

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

 β $\overline{\Delta \tau} + \mathcal{O}(\Delta \tau)$

Approximate individual non-unitary transformations with unitary transformations $e^{-i\Delta\tau A}$ [2] Expand A in the Pauli basis \rightarrow fit coefficients via solving a linear system to approx. the imaginary dynamics. Method cost generally scales exponentially in the correlation length

$$
e^{-\beta H} = \left(e^{-\Delta \tau \theta_0 h_0} e^{-\Delta \tau \theta_1 h_1} \cdots \right)
$$

[1] Quantum algorithms with applications to simulating physical systems, A. Ch. N. Chowdhury [2] Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution, M. Motta et al.

10

Exciting Times

- Simulation of an Ising model on 127 qubits
- Proof that error mitigation techniques work in practice
- Not yet a quantum advantage since sophisticated classical methods (tensor networks) exist for Ising models

We are getting close to showing a quantum advantage and doing useful things

- Good approximate solutions to electronic structure calculations beyond exact diagonalization
- Upper bounds guarantee an unconditional quality metric for quantum advantage \rightarrow certifiable by classical computers at polynomial cost
- Quantum circuits of up to 10570 (3590 2-qubit) quantum gates
	- N2 triple bond breaking (58 qubits)
	- Active-space electronic structure of [2Fe-2S] (45 qubits)
	- Active-space electronic structure of [4Fe-4S] clusters (77 qubits)

Exciting Times

Chemistry Beyond Exact Solutions on a Quantum-Centric Supercomputer

Javier Robledo-Moreno, Mario Motta, Holger Haas, Ali Javadi-Abhari, Petar Jurcevic, William Kirby, Simon Martiel, Kunal Sharma, Sandeep Sharma, Tomonori Shirakawa, Iskandar Sitdikov, Rong-Yang Sun, Kevin J. Sung, Maika Takita, Minh C. Tran, Seiji Yunoki, Antonio Mezzacapo

-
- Combining powerful classical and quantum resources!
- \rightarrow up to 6400 nodes of the supercomputer Fugaku + a Heron superconducting quantum processor

IBM Quantum

arXiv:2405.05068

Quantum Advantage

Quantum hardware requirements

Solve a *practically relevant* problem faster or better than any known classical algorithm on the best classical computer

- (1) Fighting noise: better error correction / fault-tolerance
- (2) Finding new problems: new quantum algorithms

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical"

IBM Quantum

Variational Quantum Algorithms

$$
E_0 \approx \min_{\theta} \langle \phi(\theta) | H | \phi(\theta) \rangle
$$

Approximate the solution with a parameterized state

$$
|\Psi\rangle\thickapprox |\phi(\theta)\rangle,\;\theta\in\mathbb{R}^d
$$

with $|\phi(\theta)\rangle = U(\theta)|0\rangle$ acting in the device's capabilities.

Paradigm

Ground-state preparation

IBM Quantum

Variational Quantum Time Evolution

Approach:

- State evolution \rightarrow Parameter evolution with McLachlan [1]
-

• Minimize the error between the variational trajectory and the actual gradient using a constant depth Ansatz

- Ensures that $\omega \in \mathbb{R}$
- In the case of real time evolution not necessarily energy preserving
- Unlike PFs: circuit depth does not (necessarily) increase with the number time-steps and the locality of the system

Variational Ansatz $|\psi_{\omega}(t)\rangle = U(\omega(t))|0\rangle$

Properties:

$$
H = \sum_{i} \theta_{i} h_{i}
$$

[1] A variational solution of the time-dependent Schrödinger equation, A. McLachlan

McLachlan's Variational Principle

Quantum Real Time Evolution \rightarrow VarQRTE

 δ $\left\| \left(i \frac{\partial}{\partial t} - \right) \right\|$

Quantum Imaginary Time Evolution \rightarrow VarQITE

 $\delta \left\| \left(\frac{\partial}{\partial t} + H \right) - \right\|$

$$
H = \sum_{i} \theta_{i} h_{i}
$$

Variational Ansatz $|\psi_{\omega}(t)\rangle = U(\omega(t))|0\rangle$

$$
-H\Big)\left|\psi_{\omega}(t)\right>\right\|_2=0
$$

$$
E_t\Bigg)\,|\psi_\omega(t)\rangle\Bigg\|_2=0
$$

Derivation for VarQRTE

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com 18

Let's move to the blackboard

Quantum Imaginary Time Evolution

$$
\delta \left\| \left(\frac{\partial}{\partial t} + H - E_t \right) \left| \psi_{\omega}(t) \right> \right\|_2 = 0
$$

$$
\text{Re}\left(\frac{\partial\langle\psi_{\omega}(t)|\partial|\psi_{\omega}(t)\rangle}{\partial\omega_{i}} - \frac{\partial\langle\psi_{\omega}(t)|}{\partial\omega_{i}}|\psi_{\omega}(t)\rangle\langle\psi(t)|\frac{\partial|\psi_{\omega}(t)\rangle}{\partial\omega_{j}}\right)\dot{\omega_{j}} = -\text{Re}\left(\frac{\partial\langle\psi_{\omega}(t)|}{\partial\omega_{i}}H|\psi_{\omega}(t)\rangle\right)
$$

McLachlan's Variational Principle

Variational Ansatz $|\psi_{\omega}(t)\rangle = U(\omega(t))|0\rangle$

Quantum Real Time Evolution

$$
\delta \left\| \left(i \frac{\partial}{\partial t} - H \right) |\psi_{\omega}(t) \rangle \right\|_{2} = 0
$$

Re $\left(\frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_{i}} \frac{\partial |\psi_{\omega}(t) \rangle}{\partial \omega_{j}} - \frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_{i}} |\psi_{\omega}(t) \rangle \langle \psi_{\omega}(t) | \frac{\partial |\psi_{\omega}(t) \rangle}{\partial \omega_{j}} \right) \dot{\omega}_{j} = \text{Im} \left(\frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_{i}} H |\psi(t) \rangle - \frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_{i}} |\psi_{\omega}(t) \rangle \langle \psi_{\omega}(t) | H |\psi_{\omega}(t) \rangle \right)$

$$
H = \sum_{i} \theta_{i} h_{i}
$$

McLachlan's Variational Principle

Quantum Real Time Evolution

 ψ uantum Geometric Tensor (QGT)
prop. to the Quantum Fisher Information (QFI) $\longrightarrow F_{ij}^Q \dot{\omega}_j = \text{Im} \left(C_i \right)$

Quantum Imaginary Time Evolution

 $\left\| \left(\frac{\partial}{\partial t} + H \right) - \right\|$

$$
H = \sum_{i} \theta_{i} h_{i}
$$

Variational Ansatz $|\psi_{\omega}(t)\rangle = U(\omega(t))|0\rangle$

Real

$$
i\frac{\partial |\psi(t)\rangle}{\partial t} = H |\psi|
$$

Imaginary $\frac{\partial |\psi(t)\rangle}{\partial t} = (E_t - H) |\psi(t)\rangle$

$$
\delta \left\| \left(i \frac{\partial}{\partial t} - H \right) \left| \psi_{\omega}(t) \right> \right\|_2 = 0
$$

$$
\sum_{i} -\frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_{i}} | \psi_{\omega}(t) \rangle E_{t}
$$

$$
E_t\bigg)\,|\psi_\omega(t)\rangle\bigg\|_2=0
$$

 $F_{ij}^Q \dot{\omega}_j = -\text{Re}(C_i) \propto \frac{\partial \langle E_{\omega}(t) \rangle}{\partial \omega_i}$ Application to ground state search!

$(t)\rangle$

Quantum Geometric Tensor – Interpretation

$$
\big\|\boldsymbol{\theta}^{(0)}-\boldsymbol{\theta}^{(1)}\big\|_2
$$

Model-independent measure:

$$
F(\boldsymbol{\theta}^{(0)},\boldsymbol{\theta}^{(1)})=\big|\langle \phi(\boldsymbol{\theta}^{(0)})|\phi(\boldsymbol{\theta}^{(1)})\rangle\big|^2
$$

For $\delta\theta \rightarrow 0$, we can Taylor expand the fidelity

: fidelity g : QGT

What's the *distance* of the parameters?

$$
= F(\boldsymbol{\theta}, \boldsymbol{\theta}) + \delta \boldsymbol{\theta}^{\top} \nabla_{\!\!\theta} F(\boldsymbol{\theta}, \boldsymbol{\theta}') + \frac{\delta \boldsymbol{\theta}^{\top} \nabla \nabla_{\!\!\theta}^{\top} F(\boldsymbol{\theta}, \boldsymbol{\theta}') \delta \boldsymbol{\theta}}{2} + \mathcal{O}(\|\delta \boldsymbol{\theta}\|_{2}^{3})
$$

= $1 - \delta \boldsymbol{\theta}^{\top} g(\boldsymbol{\theta}) \delta \boldsymbol{\theta} + \mathcal{O}(\|\delta \boldsymbol{\theta}\|_{2}^{3})$

 \blacksquare the QGT captures the *local model sensitivity to parameter changes*

IBM Quantum

Slightly different notation…

Fisher Information in Noisy Intermediate-Scale Quantum Applications, J. J. Meyer, 2021

Numerical Solution to ODE

Variational Quantum Time Evolution (VarQTE) A Ordinary Differential Equation (ODE)

Initial value problem (IVP)

VarQRTE

$$
f_{\text{std}}\left(\boldsymbol{\omega}\right)=\left(\boldsymbol{\mathcal{F}}^{Q}\right)^{-1}\text{Im}\left(\boldsymbol{C}\right)
$$

IBM Quantum

$$
\dot{\boldsymbol{\omega}}(t) = f(t, \boldsymbol{\omega}(t))
$$

 $\left(\boldsymbol{C}-\frac{\partial\bra{\psi^{\omega}_t}}{\partial\boldsymbol{\omega}}\ket{\psi^{\omega}_t}E^{\omega}_t\right)$

$$
VarQITE
$$

$$
f_{std}(\omega) = -(\mathcal{F}^{Q})^{-1} \operatorname{Re} (C_{i})
$$

State evolution \rightarrow Parameter evolution

Residual Errors

Variational Ansatz $|\psi_{\omega}(t)\rangle = U(\omega(t))|0\rangle$

$$
H = \sum_{i} \theta_{i} h_{i}
$$

Quantum Imaginary Time Evolution

$$
\| |e_t\rangle\|_2 = \left\| \left(\frac{\partial}{\partial t} + H - E_t \right) |\psi_{\omega}(t)\rangle \right\|_2
$$

Quantum Real Time Evolution

$$
\| |e_t\rangle\|_2 = \left\| \left(i \frac{\partial}{\partial t} - H \right) |\psi_\omega(t)\rangle \right\|_2
$$

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

IBM Quantum

Derivation for the VarQRTE Error Bound

Let's move to the blackboard

Residual Errors

Variational Ansatz $|\psi_{\omega}(t)\rangle = U(\omega(t))|0\rangle$

$$
H = \sum_{i} \theta_i h_i
$$

Quantum Imaginary Time Evolution

$$
|||e_t\rangle||_2 = \left\| \left(\frac{\partial}{\partial t} + H - E_t \right) |\psi_{\omega}(t)\rangle \right\|_2
$$

$$
\sqrt{2} \sum_{i} \psi_{\omega} |_{\omega} e^{Q} + 2 \sum_{i} \psi_{\omega} |_{\omega} e^{Q} \rangle + V_2
$$

$$
\| |e_t\rangle \|_2^2 = \sum_i \sum_j \omega_i \omega_j F_{ij}^Q + 2 \sum_i \omega_i Re(C_i) + \text{Var}(H)_t
$$

Quantum Real Time Evolution

$$
\| |e_t\rangle\|_2 = \left\| \left(i \frac{\partial}{\partial t} - H \right) |\psi_\omega(t)\rangle \right\|_2
$$

$$
\| |e_t\rangle \|_2^2 =
$$

$$
= \sum_{i} \sum_{j} \dot{\omega}_{i} \dot{\omega}_{j} F_{ij}^{Q} - 2 \sum_{i} \dot{\omega}_{i} Im \left(C_{i} - \frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_{i}} | \psi_{\omega}(t) \rangle E_{t} \right) + \text{Var}(H)_{t}
$$

$$
Var(H)_t = \langle \psi_{\omega}(t) | H^2 | \psi_{\omega}(t) \rangle - \langle \psi_{\omega}(t) | H | \psi_{\omega}(t) \rangle^2
$$

IBM Quantum

Numerical Solution to ODE

Initial value problem (IVP)

VarQRTE $f_{\rm std}\left(\boldsymbol{\omega}\right)=\left(\mathcal{F}^{Q}\right)^{-1}\mathrm{Im}\left(\boldsymbol{C}-\frac{\partial\left\langle \psi_{t}^{\omega}\right|}{\partial\boldsymbol{\omega}}\left|\psi_{t}^{\omega}\right\rangle E_{t}^{\omega}\right).$

IBM Quantum - Christa Zoufal ouf@Zurich.ibm.com

IBM Quantum

VarQTE given as an Ordinary Differential Equation (ODE)

$$
\dot{\boldsymbol{\omega}}(t) = f(t, \boldsymbol{\omega}(t))
$$

VarQITE $f_{\text{std}}\left(\boldsymbol{\omega}\right)=-\left(\boldsymbol{\mathcal{F}}^{Q}\right)^{-1}\text{Re}\left(C_{i}\right)$

$$
f_{\min}\left(\boldsymbol{\omega}\right)=\operatorname*{argmin}_{\dot{\boldsymbol{\omega}}\in\mathbb{R}^{k+1}}\left\Vert \left\vert e_{t}\right\rangle \right\Vert _{2}^{2}
$$

Alternative Variational Quantum Time Evolution Methods

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com 27

Projected Variational Quantum Dynamics [1] (pVQD)

Variational & Trotterized Imaginary Time Evolution [2] Geometric k-local $H = \sum_i \theta_i h_i$ $e^{-\beta H} = (e^{-\Delta \tau \theta_0 h_0} e^{-\Delta \tau \theta_1 h_1} \dots$ β $\overline{\Delta \tau} + \mathcal{O}(\Delta \tau)$ After a single Trotter step $\ket{\psi'}=e^{-\Delta\tau\theta_m h_m}\ket{\psi}$ Unitary approximation $\widetilde{\psi ^{\prime }})=$ $\overline{\psi}'$ ψ' $\approx e^{-i\Delta\tau A_m}|\psi\rangle, \qquad A_m = \sum_{\nu}$ \boldsymbol{i} $a^i_m \sigma_i$ $\min ||\psi'\rangle - (1 - i\Delta \tau i \Delta \tau A_m) |\psi\rangle||_2$ $Sa_m = b$ $S_{k,l} = \langle \psi | \sigma_k \sigma_l | \psi \rangle$ $b_k = \frac{-i}{l}$ \sqrt{c} $\langle \psi | \sigma_k h_m | \psi \rangle$ $c = 1 - 2\Delta \tau \langle \psi | h_m | \psi \rangle + \mathcal{O}(\Delta \tau^2)$

Complexity

[1] An efficient quantum algorithm for the time evolution of parameterized circuits, Stefano Barison, et al. 2021 [2] Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution, M. Motta, et al. 2020

$$
\min_{\theta_{t+\delta t}} 1 - |\langle \psi(\theta_{t+\delta t})|e^{-iH\delta t}|\psi(\theta_t)\rangle|
$$

Number of measurements for a single time: $\mathcal{O}\left(e^{\mathcal{L}^d}\right)$ with $\mathcal L$ correlation length, d : domain size

$$
|\psi(\theta_t)\rangle = U(\theta_t)|\psi_0\rangle
$$

$$
|\psi(\theta_{t+\delta t})\rangle = U(\theta_{t+\delta t})|\psi_0\rangle
$$

For $\delta t \rightarrow 0$ pVQD is equivalent to VarQRTE

$$
|\psi_0\rangle - U(\boldsymbol{\theta}_t) - e^{-iH\delta t} - U(\boldsymbol{\theta}_{t+\delta t}) - |0\rangle\langle 0|
$$

Now back to VarQTE...

28

How can we verify the preparation accuracy?

Bures Metric

Target state

 $|\psi^*(t)\rangle$ $\rho^*(t) = |\psi^*(t)\rangle\langle\psi^*(t)|$

Prepared variational state

 $|\psi(t)\rangle$ $\rho(t) = |\psi(t)\rangle\langle\psi(t)|$ Fidelity

Further

If
$$
\epsilon_t^2 \in [0, 2] \rightarrow F(\rho^*(t), \rho)
$$

Solobal phase independent

IBM Quantum

$$
F(\rho^*(t), \rho(t)) = |\langle \psi(t) | \psi^*(t) \rangle|^2
$$

$$
B(\rho^*(t), \rho(t)) = \sqrt{2 - 2\sqrt{F(\rho^*(t), \rho(t))}} \le \epsilon_t
$$

$$
B(\rho^*(t), \rho(t)) = \min_{\phi} |||\psi^*(t)\rangle - e^{i\phi}|\psi(t)\rangle||_2
$$

$$
(t)\big) \ge \left(1 - \frac{\epsilon_t^2}{2}\right)^2
$$

Errors

Target state

 $|\psi^*(t)\rangle$ $\rho^*(t) = |\psi^*(t)\rangle\langle\psi^*(t)|$

Exact variational state

$$
|\psi'(t)\rangle
$$

$$
\rho'(t) = |\psi'^{(t)}\rangle\langle\psi'(t)|
$$

Prepared variational state

 $|\psi_{\omega}(t)\rangle$ $\rho_{\omega}(t) = |\psi_{\omega}(t)\rangle\langle\psi_{\omega}(t)|$ What we want

approximation

ODE solution

IBM Quantum

$B(\rho^*(t), \rho_{\omega}(t)) \leq \epsilon_t$

Errors

Target state

 $|\psi^*(t)\rangle$ $\rho^*(t) = |\psi^*(t)\rangle\langle\psi^*(t)|$

Exact variational state

$$
|\psi'(t)\rangle
$$

$$
\rho'(t) = |\psi'^{(t)}\rangle\langle\psi'(t)|
$$

Prepared variational state

 $|\psi_{\omega}(t)\rangle$ $\rho_{\omega}(t) = |\psi_{\omega}(t)\rangle\langle\psi_{\omega}(t)|$ What we want

IBM Quantum

$B(\rho^*(t), \rho_{\omega}(t)) \leq \epsilon_t$

VarQTE Error Bounds

Target state

$$
|\psi^*(t)\rangle
$$

$$
\rho^*(t) = |\psi^*(t)\rangle\langle\psi^*(t)|
$$

Prepared variational state

$$
|\psi_{\omega}(t)\rangle
$$

$$
\rho_{\omega}(t) = |\psi_{\omega}(t)\rangle\langle\psi_{\omega}(t)|
$$

$$
B\big(\rho^*(t), \rho_\omega(t)\big) \le \epsilon_t
$$

$$
\epsilon_t = \int_{\tau=0}^t |||e_\tau\rangle||_2 d\tau
$$

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

IBM Quantum

Error Bounds Derivation

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com 34

Let's move to the blackboard

What about the ODE implementation?

Solving the IVP

Making the right choices when solving the different components of the system is imperative for a successful VarQTE simulation.

Methods

Exact inversion ideally g is always invertible if all parameters are linearly independent \rightarrow not true for sampled app

Least squares \rightarrow more stable

Regularized least squares, e.g., eigenvalue cut-off or ridge \rightarrow even more stable but possibly unphysical

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

 $x = g^{-1}b$

 $min_x ||b - gx||$

 $min_x ||b - gx|| + \lambda ||f||$

Solving the Ordinary Differential Equation

Main ODE solvers:

- · Euler
- · Runge-Kutta

Solving the Ordinary Differential Equation

Main ODE solvers:

- Euler
- Runge-Kutta

Explicit methods: Calculation of update by using the system state at the current time. Con: For stiff problems the time steps become impractically Pro: Simple to evaluate small

 \rightarrow Evolve $\vec{\omega}$ (τ) e.g. with explicit Euler

 $\vec{\omega}(\tau) \simeq \vec{\omega}(\tau - \delta \tau) + \dot{\vec{\omega}}(\tau - \delta \tau) \delta \tau$

Solving the Ordinary Differential Equation

Explicit methods: Calculation of update by using the system state at the current time. Pro: Simple to evaluate **Con:** For stiff problems the time steps become impractically small

 \rightarrow Evolve $\vec{\omega}$ (τ) e.g. with explicit Euler

 $\vec{\omega}(\tau) \simeq \vec{\omega}(\tau - \delta \tau) + \dot{\vec{\omega}}(\tau - \delta \tau) \delta \tau$

Main ODE solvers:

Implicit methods: Calculation of update by using the system state at the current time and for a time that lies in the future of the current time. Pro: Can improve numerical stability Con: Expensive evaluation

 \rightarrow Evolve $\vec{\omega}$ (τ) e.g. with implicit Euler

 $\vec{\omega}(\tau) \simeq \vec{\omega}(\tau - \delta \tau) + \dot{\vec{\omega}}(\tau) \delta \tau$

- Euler
- Runge-Kutta

VarQRTE **Error Bound**

Open chain transverse field Ising model on 3 qubits

$$
H = 0.5 \left(\sum_{ij} Z_i Z_j - 0.5 \sum_i X \right)
$$

 $EfficientsU2(3, reps = 1)$

 $t=1$

 $|\psi(0)\rangle = e^{-i\gamma}|000\rangle$

Runge Kutta $\boldsymbol{f_{std}}$ **State Error** $B(|\psi_t^{\omega}\rangle,|\psi_t^*\rangle)$ 0.10 $\overline{}$ ε_t 0.08 $rac{1}{2}$ 0.06 ^J 0.04 0.02 0.00 0.4 0.2 0.6 0.8 0.0 time **Runge Kutta** f_{res} **State Error** $B(|\psi_t^{\omega}\rangle,|\psi_t^*\rangle)$ 0.10 ε_t 0.08 0.06 error 0.04 0.02 0.00 0.2 0.6 0.8 0.4 0.0

time

IBM Quantum - Christa Zoufal ouf@Zurich.ibm.com

IBM Quantum

VarQITE Error Bound Hydrogen [1]

 $H = 0.2252 II + 0.5716 ZZ +$ 0.3435 IZ [−] 0.4347 ZI + 0.091 YY + 0.091 XX

 $EfficientsU2(2, reps = 1)$

 $t = 1$

 $|\psi(0)\rangle = |+\rangle \otimes |+\rangle$

[1] Variational ansatz-based quantum simulation of imaginary time evolution - S. McArdle, et al

IBM Quantum

Runge Kutta

 $\boldsymbol{f_{std}}$

State Error

What about the trainability?

Trainability of Variational Time Evolution

 $\mathcal{L}(\theta) = 1 - |\langle \psi_0 | U^{\dagger}(\theta) e^{-iH\delta t} U(\theta^*) | \psi_0 \rangle|$

\rightarrow In the limit pVQD and VarQTE are equivalent

- 1. Non-vanishing variance in poly large surrounding region
- 2. (ϵ) Convexity guarantees for poly large time steps

Conditions sufficed

Variational quantum simulation: a case study for understanding warm starts, R. Puig-i-Valls, M. Drudis, et al. 2024

Complexity

VarQTE Complexity

$$
\mathrm{Im}\left(C_i-\frac{\partial\langle\psi_{\omega}(t)|}{\partial\omega_i}\,|\psi_{\omega}(t)\right)
$$

$$
F_{ij}^Q = \left(\frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_i} \frac{\partial |\psi_{\omega}(t)\rangle}{\partial \omega_j} - \frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_i} |\psi_{\omega}(t)\rangle \langle \psi_{\omega}(t) | \frac{\partial |\psi_{\omega}(t)\rangle}{\partial \omega_j} \right) \in \mathbb{R}^{d \times d}
$$

$$
H = \sum_{i=0}^{m-1} \theta_i h_i
$$

 $\boldsymbol{\omega} \in \mathbb{R}^d$

 (E_t) and $\text{Re}(C_i) \in \mathbb{R}^d$

Wall time for 300 iterations on IBMQ Montreal

How can we reduce this complexity?

Simultaneous Perturbation Stochastic Approximation (SPSA)

[1] Spall. IEEE Transactions on Automatic Control 37(3) (1992) IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

IBM Quantum

-
-

Note: Does not apply to real time evolution <u>iuantum</u>

Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information Julien Gacon^{1,2}, Christa Zoufal^{1,3}, Giuseppe Carleo², and Stefan Woerner¹

Can we evaluate the QGT via SPSA?

Step 1

Step 2

IBM Quantum - Christa Zoufal ouf@Zurich.ibm.com

IBM Quantum

Write QGT as Hessian $F_{ij}^{Q} = -\frac{1}{2} \partial \omega_i \partial \omega_j \left| \langle \psi(\omega'(t)) | \psi(\omega(t)) \rangle \right|^2 \bigg|_{\omega' = \omega}$

Generalize SPSA for Hessians

Resource reduction

• Ising model with a transversal field $(J = 0.5, h = 1)$

$$
H = J \sum_{i=1}^{n-1} Z_i Z_{i+1} + h \sum_{i=1}^{n} X_i
$$

• Hardware-efficient ansatz with $L = log(n)$

• Measure total number of shots M to achieve $\mathcal{I} \leq 0.05$

$$
\mathcal{I} = \frac{1}{T} \int_0^T \left(1 - |\langle \phi(\theta(\tau)) | \psi(\tau) \rangle|^2 \right) d\tau
$$

exact solution

IBM Quantum

Resource reduction

• Ising model with a transversal field $(J = 0.5, h = 1)$

$$
H = J \sum_{i=1}^{n-1} Z_i Z_{i+1} + h \sum_{i=1}^{n} X_i
$$

• Hardware-efficient ansatz with $L = log(n)$

• Measure total number of shots M to achieve $\mathcal{I} \leq 0.05$

$$
\mathcal{I} = \frac{1}{T} \int_0^T \left(1 - |\langle \phi(\theta(\tau)) | \psi(\tau) \rangle|^2 \right) d\tau
$$

exact solution

IBM Quantum

$$
C_{i} = \frac{\partial \langle \psi_{\omega}(t) |}{\partial \omega_{i}} H | \psi_{\omega}(t) \rangle
$$

\n
$$
E_{t} = \langle \psi_{\omega}(t) | H | \psi_{\omega}(t) \rangle
$$

\n2Re (C_{i})

$$
H = \sum_{i} \alpha_i \bigotimes_{j} \sigma_{ij}, \ \sigma_{ij} \in \{ I, X,
$$

Shadows

Prediction of M observables with $O(log M)$ measurements up to ad \rightarrow Can also help to reduce the im

[1] Measurement optimization of variational quantum simulation K. Nakaji, S. Endo, Y. Matsuzaki, and H. Hakoshima [2] Measurement optimization in the variational quantum eiger Verteletskyi, T.-C. Yen, and A. F Izmaylov. [3] Efficient estimation of Pauli observables by derandomizatic

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

– VarQTE could help to model time dynamics for **non-local** Hamiltonians or **longer times** respectively

– This will not be a universal solution but it would be great if we could find a relevant system with a good ansatz \rightarrow possibly better suited for imaginary dynamics

IBM Quantum

Summary

– The power of the method strongly relies on

– Ansatz, ODE solver, IVP model **choice**

– Shot and hardware **noise**

Algorithm and hardware development should go hand in hand

IBM Quantum Platform: https://qua Access to quantum hardware and relate

Qiskit Documentation: https://docs How to build a circuit, transpile a circuit

Qiskit Github: https://github.com/q Code, building blocks, algorithms, etc. Special note to: https://github.com/qisk

IBM Quantum – Christa Zoufal o[uf@Zurich.ibm.com](https://github.com/qiskit-community) 78

A big thank you also goes t \rightarrow foundation for this lectu

Christa Zoufal Research Scientist **Example Scientist ouf@zurich.ibm.com**

