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Quantum Real Time Evolution

Study of real time dynamics for many-body physics systems, behavior under specific potential, etc. [1, 2, etc.]

Solve PDEs via Schrödingerisation (such as heat equations)

Quantum Imaginary Time Evolution

Finding the ground state of Hamiltonian 𝐻 [3]

Prepare a Gibbs state for a given Hamiltonian 𝐻 [4]

Solve PDEs (such as Black Scholes model) [5, 6]

[1] Quantum algorithm for simulating real time evolution of lattice Hamiltonians, J. Haah et al.
[2] Simulating quantum many-body dynamics on a current digital quantum computer, A. Smith et al.
[3] Variational ansatz-based quantum simulation of imaginary time evolution, S. McArdle, et al.
[4] Variational Quantum Boltzmann Machines, C. Zoufal et al.
[5] Quantum option pricing using Wick rotated imaginary time evolution, S. K. Radha
[6] Variational quantum simulations of stochastic differential equations, K. Kubo et al.
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Quantum Real Time Evolution
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Product Formulas (PFs) for Real Time Dynamics
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• Suppose 𝐻. 
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Product Formulas (PFs) for Real Time Dynamics

• Suppose 𝐻 = 𝐻0 + 𝐻1. 

𝑒!" #!$#" % 𝑒!"#!% 𝑒!"#"%=
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Product Formulas (PFs) for Real Time Dynamics

• Suppose 𝐻 = 𝐻0 + 𝐻1. If [𝐻0, 𝐻1] = 0, we can add the circuits 
for 𝑒$%&%#and 𝑒$%&$# in sequence

𝑒!" #!$#" % 𝑒!"#!% 𝑒!"#"%=
≃

in general!

+𝒪 𝑡&
in general!
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Product Formulas (PFs) for Real Time Dynamics

• Suppose 𝐻 = 𝐻0 + 𝐻1. If [𝐻0, 𝐻1] = 0, we can add the circuits 
for 𝑒$%&%#and 𝑒$%&$# in sequence

𝑒!" #!$#" % 𝑒!"#!% 𝑒!"#"%=
≃

in general!

+𝒪 𝑡&
in general!

• Otherwise, decreasing the time to 𝒕/𝒌 and repeating the 
sequence 𝒌 times achieves a better approximation
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Repeated 𝑘 times 𝒌 ≔ number of Trotter steps 𝑒!"#!$
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Product Formulas (PFs) for Real Time Dynamics 

• Higher order PFs: 𝑆123
3
#
= 𝑒$%&# + 𝒪 𝑡 #

3
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• Example: 2nd order PF: 𝑆13 = 𝑒$%&%
#
$)𝑒$%&$

#
)𝑒$%&%

#
$)

3
= 𝑒$%&# + 𝒪 #*

3$

𝑒!" #!$#" % 𝑒!"#!
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𝐻0, 𝐻1, ⋯ , 𝐻4 𝐻4, ⋯ , 𝐻1, 𝐻0

the number of terms grows exponentially with 𝜒

Trotter-Suzuki

Minimize cost

How to improve 
accuracy?

1. Increase 𝑘
2. Increase 𝜒
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Product Formulas for Imaginary Time Dynamics
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• By using the Hubbard-Stratonovich transformation for positive semidefinite  𝐻 one can achieve a linear 
combination of unitary operators [1]

𝑒$5&/1 =
1
2𝜋

9
$7

7

𝑑𝑦 𝑒$
8$
1 𝑒$%8 5&

Requires the identification of √𝐻 or at least =𝐻 such that =𝐻1 = 𝐻
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• For a geometric k-local 𝐻 = ∑% 𝜃%ℎ% one can apply a Trotter decomposition as

𝑒$5& = 𝑒$9:;+<+𝑒$9:;%<% …
5
9: + 𝒪(Δ𝜏)

Approximate individual non-unitary transformations with unitary transformations 𝑒$%9:= [2]
Expand 𝐴 in the Pauli basis à fit coefficients via solving a linear system to approx. the imaginary dynamics. 
Method cost generally scales exponentially in the correlation length

[1] Quantum algorithms with applications to simulating physical systems, A. Ch. N. Chowdhury
[2] Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution, M. Motta et al.
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Exciting Times

• Simulation of an Ising model on 127 qubits

• Proof that error mitigation techniques work in practice

• Not yet a quantum advantage since sophisticated 
classical methods (tensor networks) exist for Ising 
models

We are getting close to showing a quantum advantage and 
doing useful things

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com
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Exciting Times

• Good approximate solutions to electronic structure calculations beyond exact diagonalization

• Upper bounds guarantee an unconditional quality metric for quantum advantage
à certifiable by classical computers at polynomial cost

• Quantum circuits of up to 10570 (3590 2-qubit) quantum gates 
• N2 triple bond breaking (58 qubits)
• Active-space electronic structure of [2Fe-2S] (45 qubits)
• Active-space electronic structure of [4Fe-4S] clusters (77 qubits)

Combining powerful classical and quantum resources!
à up to 6400 nodes of the supercomputer Fugaku + a Heron superconducting quantum processor

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com



If you build it, they 
will use it…

Multiple utility-scale 
experiments within 
last 6 months 
(more to come)

Evidence for the utility of quantum 
computing before fault tolerance

127 qubits / 2880 CX gates

Nature, 618, 500 (2023)

Simulating large-size quantum spin 
chains on cloud-based superconducting 
quantum computers 

102 qubits / 3186 CX gates

arXiv:2207.09994

Uncovering Local Integrability in 
Quantum Many-Body Dynamics 

124 qubits / 2641 CX gates

arXiv:2307.07552

Realizing the Nishimori transition 
across the error threshold for constant-
depth quantum circuits

125 qubits / 429 gates + meas.

arXiv:2309.02863

Scalable Circuits for Preparing Ground 
States on Digital Quantum Computers: 
The Schwinger Model Vacuum on 100 
Qubits

100 qubits / 788 CX gates
arXiv:2308.04481

Efficient Long-Range Entanglement 
using Dynamic Circuits

101 qubits / 504 gates + meas.

arXiv:2308.13065

(a) (b)

Figure 1: Variational Ansatz, layout of a 102-qubit quantum computer, and simulation results of the Ansatz. (a)
The variational Ansatz structure, (b) the layout of the 127-qubit ibm_washington backend, where a chain of 102
qubits is illustrated by the thick, shaded line.

rate observable values, such as the energy of the
simulated quantum states. So far, most experi-
ments with quantitatively accurate results have
been limited to small numbers of qubits, around
ten or below [9, 10, 11, 12, 22], with a few oth-
ers reaching beyond twenty [15, 23]. None of
them has demonstrated accurate results over a
wide range of system sizes with the same model
and across different devices. There are also chal-
lenges to overcome for large-scale experiments
(around or over one hundred qubits) with use-
ful outcomes, including the need for high-fidelity
gates and readout as well as scalable and effica-
cious approaches to mitigating the effects of noise
and errors on the measured observables.

In this work, using nine distinct cloud quan-
tum computers, we present realizations of approx-
imate ground states (GS) of spin chains having
nineteen different system sizes, ranging from 4
to 102 qubits. To distinguish our work from ex-
periments performed on in-house devices or cus-
tomized physical apparatuses, we shall refer to
our use of third-party hardware as ‘cloud experi-
ments,’ as well as to make a distinction from nu-
merical simulations. We report the extracted GS
energies, accurate to within a few percent level
of error, including the inference of the energy
density in the thermodynamic limit from these
values. We emphasize that these cloud exper-
iments are not equivalent to numerical simula-

tions, as the actual devices have substantial noise
and errors and devices’ condition can drift over
time, and sometimes the same submitted jobs
can fail. Nevertheless, cloud-based experiments
offer a new paradigm for research and develop-
ment. To achieve our accurate results, we have
designed a physics-motivated variational Ansatz,
and developed efficient approaches for measuring
energies. We have utilized our improved, scal-
able, mitigation methods to extract accurate GS
energy values for large systems, despite the pres-
ence of noise and errors in the gates and the read-
out. The introduction of a reference state in the
zero-noise extrapolation (rZNE) substantially im-
proves the accuracy of the results. In addition,
we have used our procedure to measure the ener-
gies of several Ansatz states that have randomly
chosen parameters, and obtained accurate miti-
gated energy values. Our work thus establishes a
simple–yet substantially improved–quantum vari-
ational protocol with mitigation, and paves the
way for massive use of large NISQ computers for
fundamental physics studies of many-body sys-
tems, as well as for practical applications, includ-
ing optimization problems.

2

Quantum reservoir computing with 
repeated measurements on 
superconducting devices

120 qubits / 49470 gates + meas.

arXiv:2310.06706 
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FIG. 2. Decoded fidelity estimation by randomly sampling GHZ
stabilizers. a. Because our decoder was implemented as Pauli cor-
rections on the system qubits, the characterization of random stabi-
lizers, which is measured in basis rotated by single-qubit rotations
(small gray boxes), needed to be done in conjunction with the imple-
mented decoder (symbolized by the monitor). See Methods for de-
tails. b. Estimated fidelities relative to GHZ states for measurement-
based (filled blue circles) and unitary-based (red X-marks) prepara-
tion of long-range Ising ordered states on two-dimensions. The error
bars represent the standard deviation of the fidelities estimated from
bootstrap resampling random sets of stabilizers (See Methods for
more details).The theoretically predicted fidelities for measurement-
based protocol (dashed gray line) were based on an inferred noise
model with auxiliary and site readout errors with a range of parame-
ters giving rise to a 25th-75th percentile confidence interval in shaded
gray [35]. The inset shows the ratio of the experimentally evaluated
measurement- to unitary-based fidelities increasing for system size
up to 54 sites.

which resembles the partition function of the random bond
Ising model (RBIM) [18]. Concretely, by Eq. (2) we analyt-
ically map our protocol onto a RBIM precisely tracking the
Nishimori line [35] with an effective disorder probability

p̃ =
1� (1� 2ps) sin(2tA)

2
, (3)

as a joint action of both coherent and incoherent errors that
drives the phase transitions across the blue line in Fig. 1c.
In particular, this implies that every point in the extended
transition line shares the same Nishimori criticality. This
scenario for the quantum protocol is quite distinct from the
classical RBIM, whose schematic phase diagram is shown in
Fig. 1d, where the Nishimori line only occurs at the fine-tuned
solid line – demonstrating an unprecedented robustness of
Nishimori criticality in the quantum case.

GHZ fidelity in Clifford limit. For a baseline character-
ization of the measurement-based protocol, we estimated the
fidelity of the prepared states in the Clifford limit (tA = ⇡/4)
relative to the GHZ state. Because the final state in this limit
is a stabilizer state, it was sufficient for a desired accuracy to
consider only a constant number of randomly sampled mea-
surements of the system qubits [36, 37]. For the specific case
of the GHZ state, half the sampled stabilizers contain only

Pauli Z operators, while the other half are combinations of
Pauli-X and Pauli-Y operators (See Methods for more de-
tails). To assess the relative performance of our protocol, we
also implemented a standard unitary protocol for construct-
ing GHZ states [9]. In Fig. 2, we see that the fidelities of the
measurement-based protocol outperformed the unitary prepa-
ration. This can be rationalized by the latter experiencing
more errors due to the long idle times of deep circuit with
size-dependent depth between O(N) and O(log(N)).

For a system of 10 qubits, the measurement-based protocol
resulted in a GHZ fidelity above 50%, but with increasing
system size the fidelity was found to decrease exponentially
(Fig. 2b). We note, however, that this does not imply the
absence of long-range order or entanglement for these larger
systems. In fact, we expect exponentially decaying GHZ
fidelities versus system sizes in the presence of noise for
virtually all states in the same phase of matter. We emphasize
that no form of error mitigation, for measurement or unitary
gates, was used estimating these fidelities. To explain the
experimentally measured fidelities, we compared our results
against the predicted fidelities based on a noise model with
⇡ 5% incoherent auxiliary errors and ⇡ 3% data readout
errors – values inferred in the next section. This places
us in the long-range ordered phase in Fig. 1c (green star),
which in the absence of any additional errors, has long-range
GHZ-type entanglement, whilst its predicted GHZ fidelity
shown in gray in Fig. 2 decays exponentially with the number
of system qubits. We see that the experimentally obtained

0.30(1) 0.34(1) 0.29(1)

0.34(1) 0.54(1) 0.54(1)

0.48(1) 0.61(1) 0.60(1)

0.49(1) 0.58(1) 0.64(1)

0.52(1) 0.64(1) 0.54(1)

0.51(1) 0.59(1) 0.60(1)

�.� �.5 1.�

�.� �.5 1.�
0.0 0.05 0.1 0.15 0.2 0.25

t� (�)

0.0

0.2

0.4

0.6

0.8

1.0

h
Z

X
Z
i

0.0

0.2

0.4

0.6

0.8

1.0

hW
i

ba

⟨#$#⟩
⟨&⟩

- - Ideal
— Fit

FIG. 3. Experimentally measured local observables used to gen-
erate the state. a. For two observables, we plot the ideally expected
outcomes (dashed lines), the unprocessed experimental data (dots),
and a one parameter fit (solid line) for each observable for sweep-
ing tA from 0 (trivial) to ⇡/4 (long-range ordered). The average 3-
qubit-bond (red) observable reached as high as 0.8 across the 72 total
bonds, while the average 6-qubit-plaquette (blue) observable reached
0.5 across the 18 plaquettes. Although in a noiseless setting both
were expected to reach unity, the measured values agree well with
the fit by ps = 5.6%, and p� = 2.3%, which are approximately con-
sistent with the known errors on the device [35]. The experimental
data exhibits an absence of a singularity in these observables, con-
sistent with expectations for both local shallow quantum circuit, and
the internal energy of Nishimori line. b. 125 of the 127 qubits used
on ibm sherbrooke where each bond (hZXZi) and plaquette (hW i)
observable values are shaded according to the measured value. The
numbers inside plaquettes show hW i with parenthesis showing stan-
dard error.
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FIG. 3. (a) The definition of the R±(✓) gate, which implements exp[i✓/2(X̂Ŷ ± Ŷ X̂)]. The R±(✓) gate is used to implement
(b) exp[�i✓/2(X̂Ẑ

2
Ŷ � Ŷ Ẑ

2
X̂)] and (c) exp[i✓/2(X̂Ẑ

4
Ŷ � Ŷ Ẑ

4
X̂)] (note the change in sign).

FIG. 4. Simplifications of quantum circuits for the Trotterized unitaries corresponding to (a) Ô
V
mh(1), (b) Ô

V
mh(3), and (c)

Ô
V
mh(5) for L = 6, as explained in the main text. Cancellations between R+(±⇡

2 ) are highlighted with red-dashed-outlined
boxes.

cancellations among neighboring R+(±⇡

2 ) gates. As depicted in Fig. 4, this is made possible by arranging the circuit
elements so that sequential terms are o↵set by d � 1 qubits, i.e., start on qubit {0, d � 1, 2(d � 1), . . .}. This allows
for the outermost gates to cancel (using the identity in the upper left of Fig. 4). Also, for d � 5, the next layer
should start (d � 1)/2 qubits below the previous one, as the circuit depth can be reduced by interleaving the legs of
the “X”. Further optimizations are possible by noting that distinct orderings of terms, while equivalent up to higher
order Trotter errors, can have di↵erent convergence properties; see App. C.

B. Building a State Preparation Quantum Circuit using ADAPT-VQE with Classical Computing

In this section, ADAPT-VQE is used to prepare approximations to the vacuum of the lattice Schwinger model on
up to L = 14 spatial sites (28 qubits), using classical simulations of the quantum circuits developed in the previous
section. In addition to the energy density and chiral condensate introduced in Sec. II A, the fidelity density, FL, is
also studied. The fidelity density provides a measure of the average local quality of the ansatz wavefunction,

FL =
1

L

�
1 � |h ansatz| exacti|

2
�

, (9)

where | exacti is the exact vacuum wavefunction on a lattice with L spatial sites.

4

tion requires n + 1 measurements, n + 6 CNOT gates, and 5
feed-forward operations divided across two sequential steps.
Notably, as most qubits are projectively measured early in the
circuit, the idling error should be low. Thus, we expect this
shallow implementation with dynamic circuits to be advanta-
geous over its unitary counterpart, especially for large n.

FIG. 2. CCZ with (a) unitary circuit and (b) a dynamic circuit over
long ranges.

III. STATE PREPARATION: GHZ

Dynamic circuits can also be used to prepare long-range en-
tangled states. A prototypical example is the GHZ state [3],
shown schematically in Fig. 3(a). While it can be created us-
ing only Clifford gates and thus can be simulated efficiently on
a classical computer [32], it becomes non-simulatable when
followed by a sufficient number of non-Clifford gates in a
larger algorithm, or when inserted as a crucial ingredient in
e.g. efficient compilation of multi-qubit gates [33, 34].

Here, we show that GHZ states with long-range entangle-
ment can be prepared with dynamic circuits. Although we
do not see a clear advantage of dynamic circuits over unitary
ones in this case, we provide a detailed description of the chal-
lenges that must be addressed to realize such an advantage.

For preparation of a GHZ state on a 1D n-qubit chain, in
Fig. 3, we show the equivalence between the unitary circuit
(left) and dynamic circuit (right). (For a detailed derivation,
see Appendix A 2.) Notably, the unitary equivalent has a two-
qubit gate depth that scales as O (n) with quadratically in-
creasing idle time and n � 1 total CNOT gates, while the
depth of the dynamic circuits remains constant with linearly

increasing idle time, 3n/2� 1 total CNOT gates, and n/2� 1

mid-circuit measurements (see Fig. 3(c)). The dynamic cir-
cuit incurs less idle time and fewer two-qubit gate depth at the
cost of increased CNOT gates and mid-circuit measurements.
Therefore, we expect dynamic circuits to be advantageous for
large system sizes n and low errors in mid-circuit measure-
ment. For a more detailed analysis of the error budget, see
Appendix D 1.

We explore whether current large-scale superconducting
quantum devices enable an advantage with dynamic circuits
for preparation of the entangled GHZ state. To efficiently ver-
ify the preparation of a quantum state �, we use the Monte
Carlo state certification that samples from Pauli operators with
non-zero expectation values, as implemented in Ref. [27] and
described in detail in Appendix C 1. As the n-qubit GHZ
state is a stabilizer state, we can randomly sample m of the
2
n stabilizers {Si}i=1..2n and approximate the fidelity by

F =
1

m

P
m

k=1
hSki� +O

⇣
1p
m

⌘
.

The experimental results of GHZ state preparation with uni-
tary and dynamic circuits are shown in Fig. 3(d). They all
include measurement error mitigation on the final measure-
ments [35]. On the left, we show the results without dynami-
cal decoupling. In the unitary case, we observe genuine mul-
tipartite entanglement, defined as state fidelity F > 0.5 [36],
within a confidence interval of 95% up to 7 qubits with a rapid
decay in fidelity with increasing system size due to coherent
errors in two-qubit gates and ZZ crosstalk errors during idling
time [37]. In the dynamic case, we observe genuine entangle-
ment up to 6 qubits. Here, we do not find a crossover point
after which dynamic circuits have an advantage over unitary
circuits. We attribute the performance of dynamic circuits to
several factors, including the fact that the current implemen-
tation results in an average classical feedforward time that
scales with the number of potential mid-circuit measurement
bitstring outcomes, which itself grows exponentially with sys-
tem size. By reducing the error induced by idle time during
classical feedforward, we expect dynamic circuits to surpass
unitary circuits at &10 qubits—we can see this by studying
the post-processing case, which is equivalent to the dynamic
circuit implementation except that the classical logic is exe-
cuted in post-processing, not during execution of the quantum
circuit itself. We expect the exponential scaling of classical
feedforward time to be reduced to linear or constant scaling in
the near term.

On the right of Fig. 3(d), we show the results using dynam-
ical decoupling (DD) [38, 39]. We observe improved fideli-
ties for both the unitary and dynamic circuit cases, but not for
the post-processing case as there is little error induced by idle
times to quench with dynamical decoupling in the first place.
For the unitary case, we observe genuine multipartite entan-
glement up to 17 qubits, more than twice as many compared to
the unmitigated unitary case. This result is close to the state of
the art on superconducting quantum processors and is limited
by the fact that we do not leverage the 2D connectivity of the
device, as in Ref. [40]. While the fidelities are improved with
DD for dynamic circuits, the improvement is less dramatic.
We attribute this difference to two reasons: First, the unitary
circuit has a quadratic idling error term in contrast to a leading
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(d) Subsystem Structure (Repeated Measurement Scheme)
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FIG. 1. (a) Typical reservoir system. The input passes through the intermediate (artificial or physical) layer and is linearly
regressed at the output. The weights of the intermediate layer are fixed and are not used for learning. (b) Conventional QRC
model. To obtain the output signal at time t, the circuit with repetition t is prepared and measurements are made at the
end of each circuit to obtain the expected value. (c) Arrangement of qubits in ibmq_toronto. The 4 qubits indicated by the
dotted blue boxes represent a component of the QR composed of 2 qubit system and 2 qubit ancilla, respectively. (d) Detail
of the 4-qubit component of the proposed QRC model. The system (2 qubits) encodes the inputs time series, and the ancilla
(2 qubits) is measured to produce the outputs. Each system unitary U(ut), indicated by the gray dashed line, consists of RX,
RZ, and CNOT gates and encodes the input time series into the rotation angle. The system-ancilla interaction is made by two
CNOT gates. The ancilla state is reset to |0Í¢2 after each measurement.

following practical issue. That is, they produce the out-
put time series by averaging the measurement result on
every qubits at each time, meaning that we have to re-
peatedly re-prepare and run the system from the start
for each timestep to obtain the entire time series; see
Fig. 1(b). Clearly, this needs a long execution time. In-
spired by a proposal in [20, §V and Appendix C], this
paper resolves this issue by developing a QRC scheme
illustrated in Fig. 1(d), that exploits the repeated quan-
tum non-demolition (QND) measurements. That is, by
repeatedly measuring added ancilla while conditionally
keeping the coherence of the system dynamics, we ob-
tain one stochastic time series through a single running
of the entire system; we repeat this operation to obtain
a set of stochastic time series, which are finally averaged
to produce one deterministic time series with some finite
sampling errors that depend on the number of samples
used in the averaging. As a result, the execution time
of QRC may be reduced. Moreover, thanks to the re-
duction of execution time, the degree of fluctuation in

the physical parameters within the reservoir system may
be suppressed. This, in turn, may improve reproducibil-
ity of the dynamics and accordingly enable the QRC to
achieve higher performance than existing methods. We
note that after [20] there is a related QRC scheme based
on the use of weak measurements reported in [21] but
which is based on continuous-valued ancillas rather than
qubit ancillas and has not been demonstrated yet.

Many of the leading architectures for quantum com-
puting anticipate the use of millions of qubits, for exam-
ple with the use of quantum error correction based on
the surface code [22]. Our QRC scheme can take advan-
tage of a quantum computer with such a large number of
qubits to potentially enable real-time execution of QRC.
For example, suppose that 10,000 identical copies of a 100
qubit system can be realized. If 100 independent circuit
runs with repeated QND measurements can be executed
on each copy in the order of 10≠5 seconds then averag-
ing over the measurements would in principle allow for a
100 qubit QRC with a high accuracy estimation of qubit

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com
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Quantum Advantage

Quantum hardware requirements

H
ar

dn
es

s 
fo

r c
la

ss
ic

al
 c

om
pu

te
rs

Many problems
on shallow 
quantum circuits

What is here?

Solve a practically relevant problem faster or better 
than any known classical algorithm on the best 
classical computer 

(1) Fighting noise:
better error correction / fault-tolerance 

(2) Finding new problems:
new quantum algorithms

R. Feynman

“Nature isn't classical, dammit, and if you want
to make a simulation of nature, you'd better
make it quantum mechanical”

E.g. 
finding prime 
factors, Trotter 
Hamiltonian
simulation)
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Variational Quantum Algorithms

E0 ≈ min θ ⟨φ(θ)|H|φ(θ)⟩

|Ψ⟩ ≈ |φ(θ)⟩, θ ∈ R
d

with                                 acting in the device’s capabilities.|φ(θ)⟩ = U(θ)|0⟩

Approximate the solution with a parameterized state

Paradigm

Ground-state preparation

θ0

θ1

θn

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|φ(θ)⟩ = U(θ)|0⟩g(θ)θ̇ = b(θ)

problem

logical circuit

compiled circuits

QPU

result

post-processing

pulse generation

EM + compiler

pre-processingalgorithm

update
parameters

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com



Variational Quantum Time Evolution

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com 16

Approach:
• State evolution à Parameter evolution with McLachlan [1]
• Minimize the error between the variational trajectory and the actual gradient using a constant depth Ansatz

Properties:
• Ensures that 𝜔 ∈ ℝ
• In the case of real time evolution not necessarily energy preserving
• Unlike PFs: circuit depth does not (necessarily) increase with 

the number time-steps and the locality of the system

𝐻 =#
!

𝜃!ℎ!

Variational Ansatz
𝜓𝝎 𝑡 = 𝑈 𝜔 𝑡 |0⟩

[1] A variational solution of the time-dependent Schrödinger equation, A. McLachlan

θ0

θ1

θn

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|φ(θ)⟩ = U(θ)|0⟩g(θ)θ̇ = b(θ)

g(θ)θ̇
= b(θ)

|ψ(τ )⟩ ≈ |φ(θ(τ ))⟩|ψ0⟩

−
H
|ψ
0
⟩

|ψ(τ )⟩ ≈ |φ(θ(τ ))⟩



Quantum Imaginary Time Evolution
è VarQITE

𝛿𝛿
𝜕
𝜕𝑡
+ 𝐻 − 𝐸" 𝜓𝝎 𝑡

(
= 0

McLachlan’s Variational Principle

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com 17

Quantum Real Time Evolution
è VarQRTE

𝛿 𝑖
𝜕
𝜕𝑡
− 𝐻 𝜓𝝎 𝑡

(
= 0

𝐻 =#
!

𝜃!ℎ!

Variational Ansatz
𝜓𝝎 𝑡 = 𝑈 𝜔 𝑡 |0⟩



Derivation for VarQRTE
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Let’s move to the blackboard



Quantum Imaginary Time Evolution

𝛿𝛿
𝜕
𝜕𝑡
+ 𝐻 − 𝐸" 𝜓𝝎 𝑡

(
= 0

Re
𝜕 𝜓𝝎 𝑡
𝜕𝜔!

𝜕 𝜓𝝎 𝑡
𝜕𝜔%

−
𝜕 𝜓𝝎 𝑡
𝜕𝜔!

|𝜓𝝎 𝑡 ⟩⟨𝜓 𝑡 |
𝜕 𝜓𝝎 𝑡
𝜕𝜔%

𝜔̇% = −Re
𝜕 𝜓𝝎 𝑡
𝜕𝜔!

𝐻 𝜓𝝎 𝑡

McLachlan’s Variational Principle
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Quantum Real Time Evolution

𝛿 𝑖
𝜕
𝜕𝑡
− 𝐻 𝜓𝝎 𝑡

(
= 0

Re
𝜕 𝜓𝝎 𝑡
𝜕𝜔!

𝜕 𝜓𝝎 𝑡
𝜕𝜔%

−
𝜕 𝜓𝝎 𝑡
𝜕𝜔!

|𝜓𝝎 𝑡 ⟩⟨𝜓𝝎 𝑡 |
𝜕 𝜓𝝎 𝑡
𝜕𝜔%

𝜔̇% = Im
𝜕 𝜓𝝎 𝑡
𝜕𝜔!

𝐻 𝜓(𝑡) −
𝜕 𝜓𝝎 𝑡
𝜕𝜔!

|𝜓𝝎 𝑡 ⟩⟨𝜓𝝎 𝑡 |𝐻 𝜓𝝎(𝑡)

𝐻 =#
!

𝜃!ℎ!

Variational Ansatz
𝜓𝝎 𝑡 = 𝑈 𝜔 𝑡 |0⟩



Quantum Imaginary Time Evolution

𝛿
𝜕
𝜕𝑡
+ 𝐻 − 𝐸" 𝜓𝝎 𝑡

(
= 0

𝐹!%
)𝜔̇% = −Re 𝐶!

Quantum Real Time Evolution

𝛿 𝑖
𝜕
𝜕𝑡
− 𝐻 𝜓𝝎 𝑡

(
= 0

𝐹!%
)𝜔̇% = Im 𝐶! −

𝜕 𝜓𝝎 𝑡
𝜕𝜔!

𝜓𝝎 𝑡 𝐸"

McLachlan’s Variational Principle
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𝐻 =#
!

𝜃!ℎ!

Variational Ansatz
𝜓𝝎 𝑡 = 𝑈 𝜔 𝑡 |0⟩

Real

𝑖
𝜕 𝜓 𝑡
𝜕𝑡

= 𝐻 𝜓 𝑡

Imaginary
𝜕 𝜓 𝑡
𝜕𝑡

= 𝐸" − 𝐻 𝜓 𝑡

Quantum Geometric Tensor (QGT)
prop. to the Quantum Fisher Information (QFI)

∝
𝜕⟨𝐸𝝎 𝑡 ⟩
𝜕𝜔"

è Application to ground state search!



For       à 0, we can Taylor expand the fidelityδθ

Quantum Geometric Tensor – Interpretation 

What’s the distance of the parameters?

∥

∥θ
(0)

− θ
(1)
∥

∥

2

Model-independent measure:

F (θ(0),θ(1)) =
∣

∣⟨φ(θ(0))|φ(θ(1))⟩
∣

∣

2

Model-aware measure:

= 1− δθ
⊤
g(θ)δθ +O(∥δθ∥32)

the QGT captures the local model sensitivity to parameter changes

21

θ
(0)

θ
(1)

δθ

ℓ(θ) = ⟨φ(θ)|H|φ(θ)⟩

θ
1

θ0

−2g(θ)
1 0

F (θ,θ+δθ) = F (θ,θ) + δθ
⊤
∇θF (θ,θ′)

∣

∣

∣

∣

∣

θ′=θ

+
δθ

⊤
∇∇θ

⊤F (θ,θ′)δθ

2

∣

∣

∣

∣

∣

θ′=θ

+O(∥δθ∥32)
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Slightly different 
notation…

𝐹: fidelity
𝑔: QGT

Fisher Information in Noisy Intermediate-Scale Quantum Applications, J. J. Meyer, 2021



Numerical 
Solution to
ODE

Variational Quantum Time Evolution (VarQTE)  
è Ordinary Differential Equation (ODE)

Initial value problem (IVP)

𝝎̇ 𝑡 = 𝑓(𝑡,𝝎(𝑡))

VarQRTE VarQITE

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

State evolution à Parameter evolution



Residual Errors

𝐻 =#
!

𝜃!ℎ!

Variational Ansatz
𝜓𝝎 𝑡 = 𝑈 𝜔 𝑡 0

Quantum Imaginary Time Evolution

|𝑒%⟩ & =
𝜕
𝜕𝑡 + 𝐻 − 𝐸% 𝜓𝝎 𝑡

&

Quantum Real Time Evolution

|𝑒%⟩ & = 𝑖
𝜕
𝜕𝑡 − 𝐻 𝜓𝝎 𝑡

&
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Derivation for the VarQRTE Error Bound
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Let’s move to the blackboard



Residual Errors

𝐻 =#
!

𝜃!ℎ!

Variational Ansatz
𝜓𝝎 𝑡 = 𝑈 𝜔 𝑡 0

Quantum Imaginary Time Evolution

|𝑒%⟩ & =
𝜕
𝜕𝑡 + 𝐻 − 𝐸% 𝜓𝝎 𝑡

&

|𝑒%⟩ &
& =.

"

.
*

𝜔̇" 𝜔̇*𝐹"*
+ + 2.

"

𝜔̇" 𝑅𝑒 𝐶" + Var 𝐻 %

Quantum Real Time Evolution

|𝑒%⟩ & = 𝑖
𝜕
𝜕𝑡 − 𝐻 𝜓𝝎 𝑡

&

|𝑒%⟩ &
& =.

"

.
*

𝜔̇" 𝜔̇*𝐹"*
+ − 2.

"

𝜔̇" 𝐼𝑚 𝐶" −
𝜕 𝜓𝝎 𝑡
𝜕𝜔"

𝜓𝝎 𝑡 𝐸% + Var 𝐻 %

Var 𝐻 % = 𝜓𝝎 𝑡 𝐻& 𝜓𝝎 𝑡 − 𝜓𝝎 𝑡 𝐻 𝜓𝝎 𝑡 &
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Numerical 
Solution to
ODE

VarQTE given as an Ordinary Differential Equation (ODE)

Initial value problem (IVP)

𝝎̇ 𝑡 = 𝑓(𝑡,𝝎(𝑡))

VarQRTE VarQITE

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com



Alternative Variational Quantum 
Time Evolution Methods
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Projected Variational Quantum Dynamics [1] (pVQD)

For 𝜹𝒕 → 𝟎 pVQD is equivalent to VarQRTE

[1] An efficient quantum algorithm for the time evolution of parameterized  circuits, Stefano Barison, et al. 2021
[2] Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution, M. Motta, et al. 2020

min
𝜽𝒕"𝜹𝒕

1 − ⟨𝜓(𝜽𝒕,𝜹𝒕) 𝑒.!/0" 𝜓(𝜽𝒕)⟩

𝜓 𝜽𝒕 = 𝑈 𝜽𝒕 𝜓1
|𝜓(𝜽𝒕,𝜹𝒕)⟩ = 𝑈 𝜽𝒕,𝜹𝒕 |𝜓1⟩

𝑈(𝜽#) 𝑈(𝜽#>?# )𝑒$%&?#|𝜓+⟩ |0⟩⟨0|

Variational & Trotterized Imaginary Time Evolution [2]

Geometric k-local 𝐻 = ∑! 𝜃!ℎ!

𝑒.2/ = 𝑒.345$6$𝑒.345%6% …
2
34 + 𝒪(Δ𝜏)

After a single Trotter step
𝜓7 = 𝑒.345&6&|𝜓⟩

Unitary approximation

O𝜓′ =
𝜓7

𝜓7
≈ 𝑒.!348&|𝜓⟩, 𝐴9 =#

!

𝑎9! 𝜎!

min 𝜓7 − (1 − 𝑖Δ𝜏𝑖Δ𝜏𝐴9)|𝜓⟩ (
𝑆𝑎9 = 𝑏

S:,; = 𝜓 𝜎:𝜎; 𝜓 𝑏: =
−𝑖
√𝑐
⟨𝜓 𝜎:ℎ9 𝜓⟩

𝑐 = 1 − 2Δ𝜏 𝜓 ℎ9 𝜓 + 𝒪(Δ𝜏()

Complexity

Number of measurements  for a single time: 

𝒪 𝑒<' with 𝐶 correlation length, 𝑑: domain size



Now back to 
VarQTE…
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How can we verify 
the preparation 
accuracy?
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Bures Metric

𝐹 𝜌∗ 𝑡 , 𝜌 𝑡 = 𝜓 𝑡 𝜓∗ 𝑡 (

𝐵 𝜌∗ 𝑡 , 𝜌 𝑡 = 2 − 2 𝐹 𝜌∗ 𝑡 , 𝜌 𝑡 ≤ 𝜖"

Further
𝐵 𝜌∗ 𝑡 , 𝜌 𝑡 = min> 𝜓∗ 𝑡 − 𝑒!> 𝜓 𝑡 𝟐

If 𝜖"( ∈ [0, 2]è 𝐹 𝜌∗ 𝑡 , 𝜌 𝑡 ≥ 1 − @(
)

(

(

è Global phase independent

Target state

𝜓∗ 𝑡
𝜌∗ 𝑡 = 𝜓∗ 𝑡 ⟨𝜓∗ 𝑡 |

Prepared variational state

𝜓 𝑡
𝜌 𝑡 = 𝜓 𝑡 ⟨𝜓 𝑡 |

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

Fidelity



Errors
Target state

𝜓∗ 𝑡
𝜌∗ 𝑡 = 𝜓∗ 𝑡 ⟨𝜓∗ 𝑡 |

Exact variational state

𝜓′ 𝑡
𝜌′ 𝑡 = 𝜓7 " ⟨𝜓′ 𝑡 |

Prepared variational state

𝜓𝝎 𝑡
𝜌𝝎 𝑡 = 𝜓𝝎 𝑡 ⟨𝜓𝝎 𝑡 |

What we want
𝐵 𝜌∗ 𝑡 , 𝜌𝝎 𝑡 ≤ 𝜖"

𝐵 𝜌∗ 𝑡 , 𝜌𝝎 𝑡 ≤ 𝐵 𝜌∗ 𝑡 , 𝜌′ 𝑡 + 𝐵 𝜌7 𝑡 , 𝜌𝝎 𝑡

Error due to 
variational 

approximation

Error due to 
numerical 

ODE solution
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Errors
Target state

𝜓∗ 𝑡
𝜌∗ 𝑡 = 𝜓∗ 𝑡 ⟨𝜓∗ 𝑡 |

Exact variational state

𝜓′ 𝑡
𝜌′ 𝑡 = 𝜓7 " ⟨𝜓′ 𝑡 |

Prepared variational state

𝜓𝝎 𝑡
𝜌𝝎 𝑡 = 𝜓𝝎 𝑡 ⟨𝜓𝝎 𝑡 |

What we want
𝐵 𝜌∗ 𝑡 , 𝜌𝝎 𝑡 ≤ 𝜖"

𝐵 𝜌∗ 𝑡 , 𝜌𝝎 𝑡 ≤ 𝐵 𝜌∗ 𝑡 , 𝜌′ 𝑡 + 𝐵 𝜌7 𝑡 , 𝜌𝝎 𝑡

Error due to 
variational 

approximation

Mitigate locally 
using suitable ODE 

solvers
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VarQTE 

Error Bounds

Target state

𝜓∗ 𝑡
𝜌∗ 𝑡 = 𝜓∗ 𝑡 ⟨𝜓∗ 𝑡 |

Prepared variational state

𝜓𝝎 𝑡
𝜌𝝎 𝑡 = 𝜓𝝎 𝑡 ⟨𝜓𝝎 𝑡 |

𝐵 𝜌∗ 𝑡 , 𝜌𝝎 𝑡 ≤ 𝜖"

𝜖" = e
4A1

"
|𝑒4⟩ ( 𝑑𝜏
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Error Bounds Derivation
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Let’s move to the blackboard



What about the 
ODE 
implementation?
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Solving the IVP

Making the right choices when solving the different 
components of the system is imperative for a successful 

VarQTE simulation.

Methods
𝑥 = 𝑔:;𝑏

Exact inversion ideally 𝑔 is always invertible if all parameters are linearly independent à not true for sampled approx.

𝑚𝑖𝑛< 𝑏 − 𝑔𝑥
Least squares à more stable

𝑚𝑖𝑛< 𝑏 − 𝑔𝑥 + 𝝀 𝒇

Regularized least squares, e.g., eigenvalue cut-off or ridge à even more stable but possibly unphysical
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Solving the Ordinary Differential Equation
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Main ODE solvers:
• Euler
• Runge-Kutta



Solving the Ordinary Differential Equation
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èEvolve 𝜔 (𝜏) e.g. with explicit Euler

𝜔 𝜏 ≃ 𝜔 𝜏 − 𝛿𝜏 + 𝜔̇ 𝜏 − 𝛿𝜏 𝛿𝜏

Main ODE solvers:
• Euler
• Runge-Kutta

Explicit methods: Calculation of update by using the system state at the current time.
Pro: Simple to evaluate                              Con: For stiff problems the time steps become impractically 
small



Solving the Ordinary Differential Equation
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èEvolve 𝜔 (𝜏) e.g. with explicit Euler

𝜔 𝜏 ≃ 𝜔 𝜏 − 𝛿𝜏 + 𝜔̇ 𝜏 − 𝛿𝜏 𝛿𝜏

Main ODE solvers:
• Euler
• Runge-Kutta

Explicit methods: Calculation of update by using the system state at the current time.
Pro: Simple to evaluate                              Con: For stiff problems the time steps become impractically small

Implicit methods: Calculation of update by using the system state at the current time and for a time that lies 
in the future of the current time.
Pro: Can improve numerical stability     Con: Expensive evaluation

èEvolve 𝜔 (𝜏) e.g. with implicit Euler

𝜔 𝜏 ≃ 𝜔 𝜏 − 𝛿𝜏 + 𝜔̇ 𝜏 𝛿𝜏



VarQRTE 

Error Bound
Open chain 
transverse field 
Ising model on 3 
qubits

R𝐮𝐧𝐠𝐞 𝐊𝐮𝐭𝐭𝐚
𝒇𝒔𝒕𝒅
State Error

Runge Kutta
𝒇𝒓𝒆𝒔
State Error

Energy

Energy

𝐻 = 0.5 .
"*
𝑍"𝑍* − 0.5.

"
𝑋

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑆𝑈2 3, reps = 1

𝑡 = 1

𝜓 0 = 𝑒!"1 000
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VarQITE
Error Bound
Hydrogen [1]

𝐻 = 0.2252 II + 0.5716 ZZ +
0.3435 IZ − 0.4347 ZI +
0.091 YY + 0.091 𝑋𝑋

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑆𝑈2 2, 𝑟𝑒𝑝𝑠 = 1

𝑡 = 1

𝜓 0 = + ⊗ |+⟩

[1] Variational ansatz-based quantum simulation of imaginary time evolution - S. McArdle, et al
IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

Runge Kutta
𝒇𝒔𝒕𝒅

Runge Kutta
𝒇𝒆𝒓𝒓

State Error

State Error

Energy

Energy



What about the 
trainability?
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Trainability of Variational Time Evolution

55IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

Conditions sufficed

1. Non-vanishing variance in poly large surrounding region

2. (𝜖-)Convexity guarantees for poly large time steps

ℒ 𝜃 = 1 − ⟨𝜓+ 𝑈@ 𝜽 𝑒$%&?#𝑈 𝜽∗ 𝜓+⟩

Variational quantum simulation: a case study for understanding warm starts, R. Puig-i-Valls, M. Drudis, et al. 2024

à In the limit pVQD and VarQTE are equivalent



Complexity
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VarQTE 
Complexity

𝐹!%
) =

𝜕 𝜓𝝎 𝑡
𝜕𝜔!

𝜕 𝜓𝝎 𝑡
𝜕𝜔%

−
𝜕 𝜓𝝎 𝑡
𝜕𝜔!

|𝜓𝝎 𝑡 ⟩⟨𝜓𝝎 𝑡 |
𝜕 𝜓𝝎 𝑡
𝜕𝜔%

145 days

∈ ℝ`<`

Im 𝐶! −
B C𝝎 "
BD+

𝜓𝝎 𝑡 𝐸" and Re 𝐶! ∈ ℝ`

IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

Number of expectation values 𝐎 𝐓 𝐦𝐝 + 𝐝𝟐

𝐻 = #
!A1

9.E

𝜃!ℎ!

𝝎 ∈ ℝF

Number time steps



How can we 
reduce this 
complexity?
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Simultaneous 
Perturbation 
Stochastic 
Approximation
(SPSA)

∂
∆⃗
f
·∆⃗

≈

f(θ + ϵ∆⃗)− f(θ − ϵ∆⃗)

2ϵ
∆⃗⃗∆ ∇f(θ) =

⎛

⎜

⎝

∂1f(θ)
...

∂pf(θ)

⎞

⎟

⎠

≈

∆⃗ ∼ Bernoulli{±1}with

SPSA is (in the limit) an unbiased 
estimator of the gradient [1]

[1] Spall. IEEE Transactions on Automatic Control 37(3) (1992) 
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Note: Does not apply 
to real time evolution



Can we evaluate 
the QGT via 
SPSA?

Write QGT as Hessian

Generalize SPSA for Hessians

Step 1

Step 2

𝐹!"
# = −

1
2𝜕𝜔!𝜕𝜔" *𝜓 𝜔$ 𝑡 𝜓 𝜔 𝑡 %

&B'&
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Resource reduction

H = J

n−1∑

i=1

ZiZi+1 + h

n∑

i=1

Xi

|0i RY RZ • RY RZ

|0i RY RZ • RY RZ

|0i RY RZ • RY RZ

|0i RY RZ • RY RZ
...

...
...

...
...

|0i RY RZ RY RZ

⇥L

I =
1

T

T

0

(

1− |⟨φ(θ(τ))|ψ(τ)⟩|2
)

dτ

exact solution

10x less samples required

• Measure total number of shots M to achieve I ≤ 0.05

• Hardware-efficient ansatz withL = log(n)

• Ising model with a transversal field (           )J = 0.5, h = 1
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…or we employ classical shadows.
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[1] Measurement optimization of variational quantum simulation by classical shadow and derandomization, 
K.  Nakaji, S. Endo, Y. Matsuzaki, and H. Hakoshima
[2] Measurement optimization in the variational quantum eigensolver using a minimum clique cover, V. 
Verteletskyi, T.-C. Yen, and A. F Izmaylov. 
[3] Efficient estimation of Pauli observables by derandomization, H.-Y. Huang, R. Kueng, and J. Preskill

Im 𝐶! −
B C𝝎 "
BD+

𝜓𝝎 𝑡 𝐸" and Re 𝐶! ∈ ℝ`

<latexit sha1_base64="BN824k+OIlWuL7W/5GVh8UZ870s="></latexit>

Et = h ! (t) |H| ! (t)i

<latexit sha1_base64="iBgO0APTdv9uyIAB6dCoqub2lQQ="></latexit>

Ci =
@h ! (t) |
@!i

H| ! (t)i <latexit sha1_base64="aBmCXkB6s1LYM7KB99erBCJLgrI=">AAADP3ichVJbaxNBFJ5dbzXeUn0UZDAU40tIilRfCsUi9LGKaQvZsJydnN0MmZ0dZs6K63b/hOAP8mf4C3wTH/XNyUUxTdEDC99+37nMnG8So6Sjfv9LEF65eu36ja2brVu379y9196+f+KK0gocikIV9iwBh0pqHJIkhWfGIuSJwtNkdjjXT9+hdbLQb6kyOM4h0zKVAshTcfvjzquY9iMFOlMYGSfjOipyzKCJFKbUpcjKbEpP+fnR+b/kyC46tHYjwvdUv8FVwmEsf6fs8yi1IOrIgCUJivvJzZ+/ZdtYNjxud/q9/iL4JhisQIet4jjeDj5Fk0KUOWoSCpwbDfqGxvW8sVDYtKLSoQExgwxHHmrI0Y3rxfIavuOZCU8L6z9NfMH+XVFD7lyVJz4zB5q6i9qcvEwblZS+GNdSm5JQi+WgtFScCj53gk+kRUGq8gCElf6sXEzBb4i8X2tTEgszpOa/nHF+wdk6R3L2YcnMkZK+zla1AKVkZsFMq01xgqKwi/fhesZfy6JRIKTOLukzBandJp9KfzRv5OCibZvgZLc32OvtvX7WOXi5snSLPWSPWZcN2HN2wI7YMRsywX4Ej4InQTf8HH4Nv4Xfl6lhsKp5wNYi/PkLvDwUgA==</latexit>

2Re (Ci) =
@Et

@!i

Shadows
Prediction of 𝑀 observables with 
𝑂(log𝑀) measurements up to additive error
à Can also help to reduce the impact of shot noise [1]

<latexit sha1_base64="5hli8jtR9ULB9i+6YyY88C+WBAA=">AAADjnichVJdb9MwFHVWPkb56uCRF4uq0pCqqp1QQUgVExOivA1Et0JdRY7rJHd1Esu+GZQsP4MfxyP/BKctaF0nuJKl43Pul3MSaAUWu92f3k7txs1bt3fv1O/eu//gYWPv0YnNciPkSGQqM+OAW6kglSMEVHKsjeRJoORpMD+q9NNzaSxk6SdcaDlNeJRCCIKjo/zGr9ZbHwdM8TRSkmkLfsGyREa8ZEqGuI/MQBTjM3oxvPiXzMyyQ711wFB+w+KjXGcc+fAnZ0BZaLgomOYGgSvqRpd/b6u+PpS0PqxSbZ64Uq507EgWQJQhJNL6Z06CKOF+AWdlm7JXl+8MUmYlFu/bdNymn9v0S+k3mt1Odxl0G/TWoEnWcezveT/YLBN5IlMUils76XU1TotqTaFkWWe5lZqLOY/kxMGUu7WmxdKLkrYcM6NhZtxJkS7ZyxUFT6xdJIHLTDjG9qpWkddpkxzDl9MCUp2jTMVqUJgrihmtjKUzMFKgWjjAhQG3KxUxd98bnf0bUwLD5xLL/3LaOruiTQ5h/n3FVEiBqzOLQnClIDJcx4ttcSZFZpa/m+1o9ywjteIC0uiaPjGH1G7zIbjVnJG9q7Ztg5ODTq/f6X943jx8s7Z0lzwhT8k+6ZEX5JAMyTEZEeG98xLv3Ptaa9T6tUHt9Sp1x1vXPCYbURv+BusCLXY=</latexit>

H =
X

i

↵i

O

j

�ij , �ij 2 { I,X, Y, Z }

Credits [1]
The evolutions of the infidelity 𝐷! 𝜓"#$%&" , 𝜓𝝎 ) for each time step. (a) QITE for 𝐻(, (b) 
QRTE for 𝐻(, (c) QITE with Heisenberg model Hamiltonian, and (d) ITE with LiH. For a 
bricklayer HEA with d=4, n=8

Largest degree first (LDF) grouping [2]: smart combination of Pauli terms to reduce 
number of required measurements
Derandomization [3]: variant of classical shadows which aims at minimizing the 
confidence bound

https://quantum-journal.org/papers/q-2023-05-04-995/


Summary

– VarQTE could help to model time dynamics for non-local Hamiltonians or longer times respectively

– The power of the method strongly relies on

– Ansatz, ODE solver, IVP model choice

– Shot and hardware noise

– This will not be a universal solution but it would be great if we could find a relevant system 

with a good ansatz à possibly better suited for imaginary dynamics

Algorithm and hardware development 
should go hand in hand



Resources IBM Quantum / © 2024 IBM Corporation

78IBM Quantum – Christa Zoufal ouf@Zurich.ibm.com

IBM Quantum Platform: https://quantum.ibm.com/
Access to quantum hardware and related information, e.g., about system noise, tutorials, learning platform, etc.

Qiskit Documentation: https://docs.quantum.ibm.com/
How to build a circuit, transpile a circuit, debug, execute with simulators, or hardware, etc.

Qiskit Github: https://github.com/qiskit
Code, building blocks, algorithms, etc.
Special note to: https://github.com/qiskit-community

https://quantum.ibm.com/
https://docs.quantum.ibm.com/
https://github.com/qiskit
https://github.com/qiskit-community


A big thank you also goes to my colleagues for all their work! 
à foundation for this lecture

Christa Zoufal
Research Scientist ouf@zurich.ibm.com

Thank you for your 
attention!
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