Self testing in Cryptography Tina Zhang Based on joint work with Anand Notarajan and Tony Metger Algorithms: try to prove that publems are easy. Complexity: try to prove that problems are hard. Crypto: try to prove that problems are had based on assumptions. Complexity classes: groups of problems with "similar" difficulty. People often talk about: P (time class) NP verification class BPP (randomised time class) In this talk we'll need B2P quantum time class $N1$ $\frac{v$ erification Alice $\frac{c}{c}$ 1 and

rtanglement! $MIP*$: $\frac{y}{1 + a}$
 $\frac{y}{1 + a}$ (verification)
elass) * MIP is a very foundational model in classical complexity
(studying it led to PCP. thm. and sthe things) * However, no-communication may be somewhat difficult to enforce In arypto, we prefer to consider a single proces who is
cryptographically bounded (rather than 2 process who can't Alice $\frac{x}{\sqrt{1-x}}$ $\frac{y}{\sqrt{1-x}}$ $\frac{y}{\sqrt{1-x}}$ $\underbrace{V.}$ Cogoto * But there are lots of idens complexity people have developed in crypto world Idea: "compilation Use orgpts to "simulate" the no-communication assumption

Cryptographic preliminag: HE
(nomomorphic encoyption) Normal public-key-encryption: $Enc(\mathsf{pk}, m) \rightarrow c$ (suppressing randomness) $Dec(sk, c) \rightarrow m$ Homomorphic encryption adds one move algorithm: $Eual(pk, c, F) \rightarrow Enc_{pk}(F(m))$
senagpte m Does not violate enayption security because evaluator cannot decrypt. Details are annoying, constructions are subtle and delicate, but
prinitive is intritive and easy to work with. > We want to preserve
classical (for now) Compilation, attempt #1 completeness and soundness Alia $\begin{array}{|c|c|c|c|}\n\hline\n\end{array}\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\begin{array}{|c|c|}\n\hline\n\end{array}\n\begin{array}{|c|c|}\n\$ any cheating compiled
strategy can be mimicked
in the nonlocal world evey nonlocal stralegy
has a corresponding
compiled stralegy with
a value <u>at leert</u> as lugh $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array}$ $\int_{\mathcal{C}}$ compile. V $\frac{Enc_{k_1}(x)}{Var_{k_1}(F_A)}$ $\frac{Enc_{k_2}(y)}{Enc_{k_1}(a)},$ $\frac{Var_{k_2}(F_B)}{Enc_{k_2}(b)}$ "Encryption security "simulates"
Mo-communication

This attempt fails in an interesting way ^P can simulate any non signalling Alice Bob strategy eren more geneal entimportunitie I was out this also pheserves non-signalling soundness KRR 147 Compilation, attempt #2 Alia $\left(\begin{array}{c} x \\ y \\ z \end{array}\right)$ $\left(\begin{array}{c} y \\ y \\ z \end{array}\right)$ $\left(\begin{array}{c} y \\ y \\ z \end{array}\right)$ $\left(\begin{array}{c} y \\ b \end{array}\right)$ $\sqrt{\ }$ compile and round structure Encryptionsecurity simulates Eval $k_1(F_A)$

V

Enc_{k₁}(x)

Enc_{k₂}(g)

Enc_{k₂}(b)

Enc_{k₂}(b)

Enc_{k₂}(b) This works! LKLVY '22 J : preserves classical completeness soundness What about quantum entangled completeness de soundness?

rtanglement! Alia $\begin{array}{ccc} x & y \\ -a & b \end{array}$ If compile ?? But why would you care? Quantum verification. * Setting: "quantum feudaliom" Someone claims they solved a problem for you using their quantum compute. How do you know they solved it correctly! Some problems in B2P like factoring are in NP answers are easy to verify Others are not, however (consider forrelation) Quantum verification: design a protocol by which they can prove interactively to you that the problem was solved correctly, where * they run in QPT, you run in PPT Knoun results: X In the 2-provir entangled model this is passible! [RUV '13] In the single prover model this is possible assuming quartum computers cannot solve LWE [Mah 18] big result, uses carefully tailored argpto $*$ Hold on...

If we have compilation for WIIP" and not just MIP protocols,
when don't be just compile the 2-power extended verification why don't we just compile the 2-procer entangled verification postocol? More modular + other advantages (may discuss later) Turns out KLVY works for MIP* protocols too! preveves quantum completeness. $\begin{picture}(150,10) \put(150,10){\line(1,0){150}} \put(150,10){\line(1,0){150}} \put(150,10){\line(1,0){150}} \put(150,10){\line(1,0){150}} \put(150,10){\line(1,0){150}} \put(150,10){\line(1,0){150}} \put(150,10){\line(1,0){150}} \put(150,10){\line(1,0){150}} \put(150,10){\line(1,0){150}} \put(150,10){\line(1,0){15$ $Covrlprie$ $|\psi\rangle$ With good enough 2HE this will work $\frac{1}{\kappa_1}$ $\frac{\pi_{k_1}(a)}{\pi_{k_1}(a)}$
 $\frac{\pi_{k_2}(y)}{\pi_{k_2}(F_s)}$ $\frac{\pi_{k_1}(x)}{\pi_{k_2}(F_s)}$ \cdot [KMP '24] \cdot Quantum soundness Not known in general Recent result shows KLVY preserves quantum soundness in the limit as recurry parameter θ oes to α Unfortunately this does notgive you explicit cryptographic security So let's take a step back: what exactly do we need to make verification work

Infuition: as a totally classical verifier, want to somehow force the quantum prover to do the quantum. computation honeolly. You know the circuit you want it to run, e.g.
the circuit for Shor's alg ; you just don't have
the cease to cun or simulate this circuit moncell the power to run or simulate this circuit yourself. Let's start with ^a very simple baby case we'll try to make the prover measure in the X and Z bases honestly S or even just any antiommuting bases The CHSH game: (a particular MIP^{*} protocol). Alice $x \in \{0, 1\}$
Alice $x \in \{0, 1\}$ \vee $y \in \{0, 1\}$
 $b \in \{0, 1\}$ Bob Win condition: $x \cdot y = a \oplus b$. If $x = y = 1$, Alice and Bob should disagree
In all other cases they should agree $\frac{1}{2}$

In Classical Winning probability: $\frac{3}{4}$ (quantumness) 2. Quantum winning probability: $cos^2(\frac{\pi}{8})$ $(\approx 0.85 > 0.75)$ 3. There is a unique quantum winning strategy
Characterised by the algebraic relations between the measurement operators Alice uses and the measurement operator Bob uses, as well as there shared entangled state: a single EPR pair).

⁴ This unique strategy involves Bob measuring 2 anticommuting operators We $[NZ 23]$ were able to show properties $2 - 4$ hold for tions of Alice and Bob &c.) we can, by playing compiled CHSH with our single.
Dimini and check in that it wins win cost (I) prove and checking that it wins w.p. $cos^2(\frac{\pi}{8})$ force it to measure 2 anticommuting operators. And actually in it twns out that this "baby case" is particy
much the general case. $(KiA$ aev circuit - to - Hamiltonian reduction + XZ gadgets) Summary & discussion. NZ'23]: recovers seminal result of LMah'ls'] with a different, more modular approach Also uses weaker assumptions! MNS 24 : combines advantages of self-testing techniques and crypto techniques to get succinct arguments
for QMA from standard assumptions for 2mA from standard assumptions * Open, approachable problem : linear-time verification. $\mathcal{L}(\mathbf{r})$ and $\mathcal{L}(\mathbf{r})$ and $\mathcal{L}(\mathbf{r})$ and $\mathcal{L}(\mathbf{r})$ \mathcal{A} is a simple point of the set of the set of the set of the set of \mathcal{A} $\mathcal{O}(\mathcal{F}^{\mathcal{O}}_{\mathcal{O}})$, and $\mathcal{O}(\mathcal{F}^{\mathcal{O}}_{\mathcal{O}})$