Secure communications in quantum networks

Eleni Diamanti

LIP6, CNRS, Sorbonne Université

Paris Centre for Quantum Technologies

YQIS, Paris, France 6-8 November 2024

Quantum communication

Quantum communication is the art of transferring quantum information between distant locations

Encoding on properties of quantum states of light Propagation in optical fibre or free-space channels Information processing in network nodes (processors, sensors, memories)

Security

Untrusted network users, devices, nodes

Efficiency Optimal use of communication resources

Applications

Demonstrate provable quantum advantage in security and efficiency for communication and information processing tasks

Quantum network stages and applications

E. Agrell et al., Roadmap on Optical Communications, J. Opt. 26, 093001 (2024)

Securing network links: quantum key distribution

Modern cryptography relies on assumptions on the computational power of an eavesdropper \rightarrow symmetric, asymmetric, post-quantum cryptography

Quantum key distribution allows for exchange of sensitive data between two trusted parties with information-theoretic, long-term security guaranteed against an all-powerful eavesdropper

Hybrid QKD and computational (post-quantum) schemes offer defense-in-depth

Authentication	Key agreement	Message encryption
e.g. with pre-shared keys, post-	e.g. with post-quantum or QKD (ITS)	e.g. with AES or one-
quantum or ITS digital signatures	replacing vulnerable asymmetric algorithms	time pad (ITS)

QKD in practice

Performance of point-to-point, prepareand-measure fibre-optic QKD systems

ED et al., npj Quantum Information 2016

Fundamental limits in rate and range Quantum signals cannot be amplified without noise

Device independence: If Alice and Bob share nonlocal correlations less assumptions on devices

Practical security: Deviations from security proof lead to side-channel attacks

BSI report: Implementation attacks against QKD systems, November 2023

Discrete and continuous variable encoding

Light is :	Discrete Photons	Continuous
We want to know :	their Number & Coherence	its Amplitude & Phase (polar) its Quadratures X & P (cartesian)
We describe it with :	Density matrix $\rho_{n,m}$	Wigner function W(X,P)
We measure it by :	Counting: APD, VLPC, TES SNSPD	Demodulating : Homodyne Detection Local Oscillator θ V_1 - $V_2 \propto X = X\cos \theta + P\sin \theta$
« Simple » States	Fock States	Gaussian States
В	B84, Decoy state, COW, DPS, MD	 One or two-way, Gaussian or discrete modulation

coherent or squeezed states, post selection, MDI

V. Scarani *et al.*, Rev. Mod. Phys. 2009, ED and A. Leverrier, Entropy 2015 F. Xu *et al.*, Rev. Mod. Phys. 2020, S. Pirandola *et al.*, Adv. Opt. Phot. 2020

Coherent-state continuous-variable QKD

Alice and Bob perform noise variance measurements to bound the Holevo information of Eve:

$$K = \beta I_{AB}(V_A, T, \xi, \eta, v_{el}) - \chi_{BE}(V_A, T, \xi, \eta, v_{el})$$

Leverage compatibility with technology and digital signal processing (DSP) techniques used in coherent telecom systems

Full Python open-source software suite called QOSST (Quantum Open Software for Secure Transmissions) Operates with built-in optimization over more than 10 DSP parameters, and calibration of Tx and Rx DSP includes pulse shaping, synchronization, phase and frequency recovery steps

Benchmarked with setup using frequency multiplexed pilots, Gaussian modulation, 100 Mbaud, RF heterodyne detection

Photonic integration offers scalability, reproducibility, interconnectivity, reliability, reduced cost and physical footprint

G. Moody et al., 2022 Roadmap on Integrated Quantum Photonics J. Phys. Photon. 4, 012501 (2022)

CV-QKD well suited for PIC-based systems

Si receiver chips designed with CNRS/C2N and fabricated by CEA-LETI on a SiGe process

Low transmission losses, high fibre-to-chip coupling efficiency, mature microfabrication techniques (but laser integration challenging)

5. r nys. r noton. 4, 012

Photonic integration

14 dB clearance @ 100 MHz, excellent linearity, $\eta \sim 16-17\%$

Benchmarked with QOSST

Asymptotic secret key rate with Gaussian modulation 2.4 Mbit/s @ 10 km, 220 kbit/s @ 23 km

Y. Piétri *et al.*, *Experimental demonstration* of CV-QKD with a silicon photonics integrated receiver, arXiv:2311.03978, to appear in Optica Quantum

Next step: full integration

InP-PIC CV-QKD Tx, with ICFO and HHI J. Aldama *et al.*, OFC 2023

Long-distance networks

To counter inherent range limitation due to optical fiber loss \rightarrow terrestrial and satellite-based networks

Practical testbed deployment allows for interoperability, maturity, network integration aspects and topology, use case benchmarking, standardization of interfaces

Y.-A. Chen et al., Nature 2021

Mesh type networks with point-to-point links with trusted nodes

SECOQC QKD network, 2008 Swiss Quantum Network, 2011 Tokyo QKD network, 2015

China integrated terrestrial-satellite network South Korea governmental network Singapore NQSN+ network

If the distance between Alice and Bob exceeds the range of the system:

Alice-R: key1, R-Bob: key2, R: key1 \oplus key2 \rightarrow Bob: key2 \oplus (key1 \oplus key2) = key1

Create efficiently end-to-end entangled resources with quantum repeaters and quantum memories Fundamental for interconnecting devices via teleportation over long distances, alleviate need for trust in intermediate nodes

M. Cao, F. Hoffet et al., Optica 2020

M. Pompili et al., Science 2021

Technological challenges despite significant progress

 \rightarrow trade-offs in critical benchmarks (efficiency, storage time), entanglement rate, range,...

 \rightarrow development of network architecture for the quantum internet

Target performance with multiplexing techniques: repeater link with 50 bit/s over 50 km, >97% fidelity Full network stack for target use cases in server-client scenario

D. Lago-Rivera et al., Nature 2021

Towards space-based quantum networks

They alleviate the need for long chains of trusted nodes or quantum repeaters They serve more use cases: remote, isolated or inaccessible locations

Security analysis for a fluctuating channel

Refined analysis of fibre coupling with adaptive optic system \rightarrow correcting up to 15 orders optimal for both CV and DV-QKD, for LEO at almost all conditions Analysis of entanglement-based scenario \rightarrow trade-offs between visibility time, losses, divergence, pointing, telescope size, detector efficiency,...

D. Dequal *et al.*, npj Quant. Info. 2021, V. Marulanda Acosta *et al.*, New. J. Phys. 2024 L. de Forges de Parny *et al.*, Commun. Phys. 2023 Payload characteristics of Micius:pointing error 1 μrad, divergence angle 10 μradGround station characteristics of Matera LaserRanging Observatory: telescope diameter 1.5 m

Paris testbed deployment and FranceQCI

Benchmarking with commercial systems Efficient PQC-secured trusted-node QKD exchange

Deployment of CV-QKD industrial prototype

Entanglement distribution with PIC-based sources

exail

Deployment of quantum memory link Highly-efficient neutral atom based technology

Long term secure storage with QKD

Quantum coin flipping

Strong coin flipping

Allows two distrustful parties to agree on a random bit, whose value should not be biased

With classical resources \rightarrow computational assumptions or trusted third party With quantum resources \rightarrow information-theoretic security but fundamental lower bound: bias $\epsilon > 0$

Theoretical analysis allows for non-zero honest abort to include imperfections Satisfies balancing condition: $P_d^A = P_d^B$ Experimental demonstration with adapted QKD system

A. Pappa et al., Nature Commun. 2014

Weak coin flipping

- Alice and Bob have a preferred outcome, effectively designates a winner and a loser
- \rightarrow bias arbitrarily close to zero in principle
- \rightarrow allows to construct optimal quantum SCF and bit commitment schemes

High sensitivity to loss: a party can declare loss if unhappy with the flip Previously impractical protocols: require beyond-qubit states and generalized measurements

Ideal conditions for cheat sensitivity

Fairness: $P_h^{A.wins} = P_h^{B.wins}$ Correctness: $P_h^{A.sanct} = P_h^{B.sanct} = 0$

photon number encoding conditional verification step

S. Neves, V. Yacoub, U. Chabaud, M. Bozzio, I. Kerenidis, ED, Nature Commun. 2023

Experimental demonstration of quantum WCF

Detector performance and interferometer visibility crucial

Quantum advantage in form of cheat sensitivity maintained over a few kilometers

S. Neves et al., Nature Commun. 2023

Certification of multipartite entangled states

The development of tools to certify the "quantumness" of resources ubiquitous in quantum technologies is fundamental for their use for practical applications

Multipartite entangled states as a resource for quantum network protocols

To guarantee the correct functioning of the protocol and hence the targeted property – privacy, security, anonymity,... \rightarrow introduce subroutine for authentication of resources at hand

Certification of multipartite entangled states

Ideally no assumptions for certification: black box model \rightarrow device independence (DI)

Violation of Bell inequality is a DI witness of entanglement
 → maximal Bell violation DI witness of particular quantum states and measurements?

Self-testing: find the relation between the physical and an ideal reference experiment The distance of the observed violation from the maximal one bounds the fidelity of the state

Typically, important assumptions: no losses, large sets of independently and identically distributed (IID) states, measurement of all states,...

I. Šupić and J. Bowles., Self-testing of Quantum Systems: A Review, Quantum 2020

- No trust on the measurement devices (DI scenario)
- No IID assumption (compatibility with adversarial scenarios)
- Output certified state available for use

Our contribution: few-copies, non-IID GHZ state certification

A. Gočanin et al., PRX Quantum 2022

Theoretical protocol

Fully device-independent scenario

Reframe scenario as nonlocal game derived from the Bell inequality

Only the target state (up to local isometries) achieves the optimal quantum winning probability

Sample efficiency

For *N*-1 measured copies and given a randomly selected unmeasured copy, we can infer with a confidence $(1-\delta)$ that this copy is $(1-\eta)$ close to the target state

Experimental certification of a 4-party GHZ state

L. dos Santos Martins *et al., Experimental sampleefficient and device-independent GHZ state certification,* arXiv:2407.13529

 $\begin{array}{l} \text{Mermin-like nonlocal game} \\ \text{Trade-off between N and δ} \\ \text{Certification of $\mathbf{\mathcal{E}}(\sigma_c, |GHZ\rangle) \geq 0.896$ for} \\ \mathbf{1} - \delta = \mathbf{0}.99$ and $N = 4643$ \end{array}$

L. dos Santos Martins et al., Realizing a compact, high-fidelity, telecomwavelength source of mutitipartite entangled photons, arXiv:2407.00802

Key takeaways

Significant progress in recent years

High-TRL QKD systems deployed in moderate-scale testbeds all over the world with strong security assumptions (trusted end users, mostly trusted intermediate nodes)

Milestone satellite quantum communication experiments

Low-TRL implementations of other quantum cryptographic functionalities

Low-TRL quantum memory devices and elementary repeater links

What are the next barriers to overcome for scale up and wide use in global quantum networks? Relax security assumptions on users and nodes Enhance performance and increase TRL while also providing agility and versatility in large-scale testbeds Integrate with computational (post-quantum) cryptography and standard networks Enrich functionalities with demonstrated quantum advantage

Certification and standardization across all quantum technology pillars

Thank you!

Y. Piétri, M. Schiavon, A. Rosio, V. Marulanda Acosta, L. Trigo-Vidarte, D. Fruleux, A. Rhouni, F. Roumestan,
A. Ghazisaeidi, M. Huguenot, B. Gouraud, A. Leverrier, P. Grangier, T. Liège, C. Lim, J.-M. Conan, D. Dequal
L. dos Santos Martins, N. Laurent-Puig, V. Yacoub, S. Neves, M. Bozzio, U. Chabaud, M. Baroni,
S. Scheiner, A. Innocenzi, A. Yangüez, M. Rezig, P. Lefebvre, I. Šupić, I. Kerenidis, A. Grilo, D. Markham