Spin-bounded correlations: rotation boxes within and beyond quantum theory

 $\frac{1}{10}$

Thomas Galley IQOQI- Vienna

November 2024 - YQIS Paris

Spin-bounded correlations: rotation boxes within and beyond quantum theory

Albert Aloy,^{1,2,*} Thomas D. Galley,^{1,2,†} Caroline L. Jones,^{1,2,‡} Stefan L. Ludescher, 1, 2, § and Markus P. Müller^{1, 2, 3, ¶} $¹ Institute for Quantum Optics and Quantum Information,$ </sup> Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria 2 Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Vienna, Austria ³ Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada (Dated: December 14, 2023)

$p(A, B|X, Y, \psi) =$

$$
p(+1, +1|0°,45°,\psi)
$$

 \vdots $\in \mathbb{R}^{16}$
 $p(-1, -1|90°,135°,\psi)$

 $P_0 := \{ p(A, B | X, Y, \psi) | \psi, X, Y \}$

Set of correlations for all possible quantum states and 2 outcomes measurements

A = Square/Circle, B = Square/Circle, Green/Red

$X =$ shape, colour $Y =$ shape, colour

 $P =$

1

3

+

1

3

+

1

3

Green/Red

$p(A, B | X, Y, P) =$

p(*G*, *G*|*C*,*C*, *P*) ⋮ $p(\Box, \Box | S, S, P)$ $\in \mathbb{R}^{16}$

 $p(A, B | X, Y, P) = \sum_{i} p(\lambda | P)p(A | X, \lambda)p(B | Y, \lambda)$

P_C set of correlations obtained when Alice and Bob share a classical system

λ

BY A STOLEN TO YOUR R.A. LEATH, A BEATLE AND TELE TETRO RESIDENT A LIFE OF A STARBOOKS AND A COMPANY OF A BEATLE AND ARREST A RESIDENT AND A RESIDENT A STARBOOKS AND A

A lesson from Bell's theorem *PC* Classical correlations $p(A, B | X, Y, P) = \sum_{i} p(\lambda | P)p(A | X, \lambda)p(B | Y, \lambda)$ *λ PQ* Quantum correlations $p(A, B | X, Y, P) = Tr(\rho_P(X_A \otimes Y_B))$

Bell's theorem $P_C \subsetneq P_Q$

ville van de staatse staats. Die staatstaat die same om de verdie van die staatse van die oostele van die van die maar met die van

 $P_C \subseteq P_Q$

BRANCA AND MARKET COMPANY AND ANGELES AND ANGELES AND ANGELES AND ANGELES AND ANGELES AND ANGELES AND ANGELES

Bell's theorem $P_C \subsetneq P_Q$

 $P_C \subseteq P_Q$

 P_C

Bell inequality $\left\langle A_0B_0 \rangle + \left\langle A_0B_1 \right\rangle + \left\langle A_1B_0 \right\rangle - \left\langle A_1B_1 \right\rangle \leq 2$

No-signalling

It is not the same as locality/ parameter independence

- $p(A|X, Y, P) = p(A|X, P)$ $p(B|X, Y, P) = p(B|Y, P)$
- No-signalling is purely operational
	-
	- $p(A|X, Y, \lambda) = p(A|X, \lambda)$
- A model which violates locality still leads to observed statistics which are no-signalling

The space of no-signalling correlations

The set of all correlations which obey the no-signalling condition

 $p(A|X, Y, P) = p(A|X, P)$ $p(B|X, Y, P) = p(B|Y, P)$

 $P_{C} \subsetneq P_{O} \subseteq P_{NS}$

 $P_{Q} \subsetneq P_{NS}$?

Does the no-signalling principle fully determine the set of quantum correlations?

Cannot derive the set of quantum correlations from no-signalling principle alone

 $P_{Q} \subsetneq P_{NS}$

 $\langle A_0B_0 \rangle + \langle A_0B_1 \rangle + \langle A_1B_0 \rangle - \langle A_1B_1 \rangle \leq 2\sqrt{2}$ *PQ* P_C

Does the no-signalling principle fully determine the set of quantum correlations?

 $\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \leq 4$

 $\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \leq 2$

Can use inequalities as witnesses for membership in different sets

The general lessons

A physical principle imposes constraints on the possible correlations • The quantumly realisable correlations are a subset of the general correlations

Inequalities can be used to witness membership in different sets • Space-time structure does not single out quantum theory (in this case)

No-signalling is not the only relevant spatio-temporal feature!

Spatio-temporal symmetry groups are a defining feature of spacetime.

Do space-time symmetries fully constrain probabilistic theories to be

quantum or is there a gap?

Prepare and measure scenario

a

Outcome with probability *p*(*a*)

Preparation box Measurement box

Rotation boxes

θ

a Outcome with probability *p*(*a*|*θ*) *a* ∈ {0,1,...,*m*}

Preparation box Measurement box

Preparation box has input *θ* ∈ [0,2*π*) Typically input is *x* ∈ {0,1,...,*n*}

 $p(+1|\theta) = \frac{1}{2}(\cos(\theta) + 1)$

Rotation boxes

device with outcomes $a \in \{1,...,m\}$ generate a probability distribution $p(a | \theta) \in [0,1]$

Preparation device and measurement device are initially uncorrelated (e.g. do not share an entangled state): semi-device independent regime.

A preparation device with input $\theta \in [0,2\pi)$ and a measurement

Prepare and measure scenario

Preparation box Measurement box

 $p(a|\theta - \alpha) = q(a|\theta)$

p(*a*|*θ*)

α

a

Quantum rotation boxes

System \mathbb{C}^d

 $p(a|\theta) = \text{Tr}(U_{\theta}\rho U_{\theta}^{\dagger})$ $P(a | \theta) = Tr(U_{\theta} \rho U_{\theta}^{\dagger} E_{a})$

 $\rho \mapsto U_{\theta} \rho U_{\theta}^{\dagger}$ {*E_a*}_{*a*∈} POVM

θ

(Projective) unitary representation

Density operator

Quantum spin $1/2$ correlations $(A = 2)$

 $e^{-i\frac{\theta}{2}}$ 0 $\left(\begin{array}{cc} e^{i\frac{\theta}{2}} \end{array} \right)$

$\mathcal{L}_{\theta}^{\dagger}|\psi\rangle = c_0 + c_1 \cos(\theta) + s_1 \sin(\theta)$

^θ |*ψ*⟩ |*ρ*, *Ea*}

Set of spin $1/2$ quantum correlations

$\mathscr{R}^2_{\frac{1}{2}}$ 2 $= {p(a | \theta) = c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) | c_0, c_1, s_1 \in \mathbb{R}, p(a | \theta) \in [0,1]}$

General spin 1/2 correlations

2

1

2

Can every trigonometric polynomial of order 1 which is a valid probability be generated by a spin 1/2 quantum particle?

2

1

2

 $= 92^2$ 2 ?

Yes!

Every $p(a|\theta) = c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) \in [0,1]$ can be realised on a qubit

Spin J quantum correlations U_{θ} = +*J* ⨁ *Nj j*=−*J eij^θ* General projective unitary representation of SO(2): *J* ∈ {0, 1 2 ,1, 3 2 Observe only integers or half integers can occur in the sum.

Spin J quantum correlations

 $U_{\theta} = e^{i}$ −2 0 0 0 0 0 0 −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2

 $U_{\theta} = e^{i}$

^θEa)

^θEa)}

 $c_j \cos(j\theta) + s_j \sin(j\theta)$

Theorem

$p(a|\theta) \in \mathbb{Q}_J \implies \exists |\psi\rangle \in \mathbb{C}^{2J+1}$

^θEaU^θ |*ψ*⟩

where

$$
y(-J, -J+1, ..., J-1, J)
$$

J integer or half-integer

Theorem

 $\overline{\mathbf{0}}$ -2 $0\quad 0$ $\overline{0}$ $\overline{0}$ -1 $\overline{0}$ \bigcirc $\mapsto e^i$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $\overline{0}$ $0\quad 0$ $2,$ $\overline{2}$

 $p(a|\theta) = \langle \psi | U_{\theta}^{\dagger}$ *^θEaU^θ* |*ψ*⟩ where $U_{\theta} = e^{i\theta Z}$, $Z = \text{diag}(-J, -J+1,..., J-1, J)$, $|\psi\rangle \in \mathbb{C}^{2J+1}$ $p(a|\theta) = c_0 +$ 2*J* ∑ *j*=1 $c_j \cos(j\theta) + s_j \sin(j\theta)$ Spin J quantum correlations J \subset $Q_{J+\frac{1}{2}}$ 2

General spin J correlations 2*J* $\mathscr{R}_J := \{ p(a | \theta) = c_0 +$ ∑ *j*=1 $Q_J \subseteq \mathcal{R}_J$

$c_j \cos(j\theta) + s_j \sin(j\theta) | p(a|\theta) \in [0,1]$

Main question of the work

When does $Q_I = \mathcal{R}_I$?

Does the requirement of rotational covariance and fixed spin constrain probabilities to be quantum mechanical?

Analogous to question of whether the no-signalling constraint implies quantum probabilities

Spin 1 quantum correlations

e−*i^θ* 0 0 0 1 0 0 0 $e^{i\theta}$

 $|\psi\rangle \in \mathbb{C}^3$

^θEaU^θ |*ψ*⟩

 $p(a | \theta) = c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) + c_2 \cos(2\theta) + s_2 \sin(2\theta)$

Trigonometric polynomial of degree 2

The case J = 1

$p(a | \theta) = c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) + c_2 \cos(2\theta) + s_2 \sin(2\theta)$

$p(a | \theta) = (c_0 \ c_1 \ s_1 \ c_2 \ s_2) \cdot \sin(\theta)$

1 cos(*θ*) cos(2*θ*) sin(2*θ*)

$\Omega_1 := \text{Conv} \setminus \{$

State space

1 cos(*θ*) sin(*θ*) cos(2*θ*) sin(2*θ*) $\theta \in [0, 2\pi)$

Orbitope: convex hull of the orbit of a group acting on a vector

Effect space

$\mathcal{R}_1 := \{ (c_0, c_1, s_1, c_2, s_2) | c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) + c_2 \cos(2\theta) + s_2 \sin(2\theta) \in [0,1] \}$

$\mathcal{E}_1 := \{ (c_0 \ c_1 \ s_1 \ c_2 \ s_2) | (c_0 \ c_1 \ s_1 \ c_2 \ s_2) \cdot \mid \sin(\theta) \mid \in [0,1], \forall \theta \in [0,2\pi) \}$ 1 cos(*θ*) cos(2*θ*) sin(2*θ*)

Convex sets

Convex sets

 \overline{B}

 \boldsymbol{A}

$\lambda A + (1 - \lambda)B, \lambda \in [0,1]$

<u> 1990 - 1991 - 1991 - 1992 - 1993 - 1992 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1994 - 1995 - 1995 - 199</u>

Convex sets: extremal points

Convex sets: faces

Carathéodory orbitope

1 cos(*θ*) sin(*θ*) cos(2*θ*) sin(2*θ*)

 $\theta \in [0, 2\pi)$

Well characterised as a convex set (facial structure known)

Want to characterise the dual space

Space of J =1 correlations

 $\mathcal{R}_1 := \{ (c_0, c_1, s_1, c_2, s_2) | c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) + c_2 \cos(2\theta) + s_2 \sin(2\theta) \in [0,1] \}$

Characterise all extremal points of \mathcal{R}_1

Space of J =1 correlations

Prove that all extremal points of \mathcal{R}_1 are quantumly realisable with a spin 1 system

The case $J = 3/2$

$p(a | \theta) = c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) + c_2 \cos(2\theta) + s_2 \sin(2\theta) + c_3 \cos(3\theta) + s_3 \sin(3\theta)$

$p(a| \theta) \in \mathbb{Q}_{\frac{3}{2}}$ 2

Theorem

 \Rightarrow $c_2 + s_3 \le$ 1 3 $\lesssim 0.5774.$

Uses semi-definite program and analogue to Almost Quantum correlations

The case $J = 3/2$ $p(a| \theta) \in \mathbb{Q}_3$ 2 \Rightarrow $c_2 + s_3 \le$ 1 3 $\lesssim 0.5774.$ $p^{\star}(\theta) :=$ 2 5 + 1 4 $\sin\theta +$ 7 20 cos(2*θ*) + 1 4 $c_2 + s_3 = 0.6$ $p^{\star}(\theta) \notin Q_3$ 2 $p^{\star}(\theta) \in \mathscr{R}_3$ 2

sin(3*θ*) ∈ [0,1]

-
-

The case *J* ≥ 2

$$
-1 + S_{2J})(P) \le \beta = \frac{1}{\sqrt{3}}
$$

 $P \in \mathbb{Q}_J \implies (c_{2J-1})$ *P*⋆ *^J* (*θ*) := 2*J* ∑ $k=-2J$ $a_k e^{ik\theta}$, $a_{-k} = \overline{a_k}$ $a_0 =$ *a*2*J*−1−2*^m* = $\frac{3}{16}\left(\frac{1}{4}\right)$ *m* $a_{2J-2-2l} = -\frac{1}{32}$ 3i (1 $\overline{4}$ *l*

$$
\frac{a_k}{a_0} = \frac{1}{2} a_{2j} = -\frac{i}{8}
$$

$$
m=0,\ldots,\lfloor J-1\rfloor,
$$

$$
l=0,\ldots,\lceil J-2\rceil.
$$

$$
s_{2J} + c_{2J-1} = 5/8 > \beta
$$

Summary $\mathscr{R}_0 = \mathscr{Q}_0$ \mathscr{R}_1 $= Q_1$ 2 2 $\mathscr{R}_1 = \mathscr{Q}_1$ 3 $\mathscr{R}_J \subsetneq \mathbb{Q}_J, J \geq$ 2

How important is the fixed J assumption

Very!

 \mathcal{R}_J can be realised by an infinite spin quantum system $L^2(S_1)$

 Can also be realised by a classical system with configuration space S_1

No finite dimensional classical systems have a non-trivial representation of SO(2)

Finite dimensional classical systems

 \sqrt *p*(0) $p(1)$ $p(0)$
 $p(1)$ $p(0)$

Infinite dimensional classical system

States are probability measures on circle.

Effects are response functions: $e: S^2 \to [0,1]$

 $\delta_{\theta} \mapsto \delta_{\theta+\theta'}$

 $p(a|\theta) = p(a|\theta')\delta_{\theta}$

Semi-device independence

For single systems cannot have full device independence. Any statistics can be simulated by a large enough classical system.

Impose some constraint: e.g Hilbert space dimension. In this case a

notion of generalised spin.

Conclusion

SO(2) rotations do not constrain correlations to be quantum for $J \geq \frac{3}{2}$ 3 2

 \cdot SO(2) covariance + spin 1/2 or 1 implies quantum correlations.

Future work: extension to SO(3) or Lorentz group.

