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A lesson from Bell’s theorem
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A lesson from Bell’s theorem

|ψ⟩ =
1

2
( |HH⟩ + |VV⟩)

X = 0∘, 90∘ Y = 45∘, 135∘

A = ± 1 B = ± 1



A lesson from Bell’s theorem

p(A, B |X, Y, ψ) =
p(+1, + 1 |0∘,45∘, ψ)

⋮
p(−1, − 1 |90∘,135∘, ψ)

∈ ℝ16

PQ := {p(A, B |X, Y, ψ) |ψ, X, Y}

Set of  correlations for all possible 
quantum states and 2 outcomes 
measurements  



A lesson from Bell’s theorem

X = shape, colour Y = shape, colour

A = Square/Circle , 
  Green/Red

1
3

+
1
3

+
1
3

B = Square/Circle , 
  Green/Red

P = 



A lesson from Bell’s theorem

p(A, B |X, Y, P) =
p(G, G |C, C, P)

⋮
p( □ , □ |S, S, P)

∈ ℝ16

PC set of  correlations obtained when Alice 
and Bob share a classical system

p(A, B |X, Y, P) = ∑
λ

p(λ |P)p(A |X, λ)p(B |Y, λ)



A lesson from Bell’s theorem

PC

p(A, B |X, Y, P) = ∑
λ

p(λ |P)p(A |X, λ)p(B |Y, λ)

Classical correlations

PQ Quantum correlations

p(A, B |X, Y, P) = Tr(ρP(XA ⊗ YB))



A lesson from Bell’s theorem

PC ⊆ PQ

PC ⊊ PQBell’s theorem

PC

PQ



A lesson from Bell’s theorem

PC ⊆ PQ

PC ⊊ PQBell’s theorem

PC

PQ
Bell inequality ⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2

(CHSH)



The lesson of  Bell’s theorem

X Y

A B



The lesson of  Bell’s theorem
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A B



The lesson of  Bell’s theorem

X Y

A B



No-signalling (signal locality)

X Y

A Bp(A |X, Y, P) = p(A |X, P) p(B |X, Y, P) = p(B |Y, P)



No-signalling
p(A |X, Y, P) = p(A |X, P)

p(B |X, Y, P) = p(B |Y, P)

No-signalling is purely operational

It is not the same as locality/ parameter independence

p(A |X, Y, λ) = p(A |X, λ)

A model which violates locality still leads to observed statistics which are no-signalling



The space of  no-signalling correlations

p(A |X, Y, P) = p(A |X, P)

p(B |X, Y, P) = p(B |Y, P)

The set of  all correlations which obey the no-signalling condition

PC ⊊ PQ ⊆ PNS

PQ ⊊ PNS?



Does the no-signalling principle fully determine the set 
of  quantum correlations?

PQ ⊊ PNS

PC

PQ

PNS

Cannot derive the set of  quantum correlations from no-signalling principle alone



Does the no-signalling principle fully determine the set 
of  quantum correlations?

PC

PQ

PNS ⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2 2

⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 2

⟨A0B0⟩ + ⟨A0B1⟩ + ⟨A1B0⟩ − ⟨A1B1⟩ ≤ 4

Can use inequalities as 
witnesses for membership in 
different sets



The general lessons

A physical principle imposes constraints on the possible correlations 

The quantumly realisable correlations are a subset of  the general 
correlations 

Inequalities can be used to witness membership in different sets 

Space-time structure does not single out quantum theory (in this 
case)



No-signalling is not the only relevant spatio-temporal 
feature!

Spatio-temporal symmetry groups are a defining feature of  space-
time.  

Do space-time symmetries fully constrain probabilistic theories to be 
quantum or is there a gap?



Prepare and measure scenario

a

Preparation box Measurement box

Outcome with probability
p(a)



Prepare and measure scenario

{+1, − 1}

p(+1 |X) = p(−1 |X) =
1
2

| ↑Z ⟩ X



Rotation boxes

a

Preparation box Measurement box

Outcome with probability
p(a |θ)

θ

Preparation box has input θ ∈ [0,2π)

Typically input is x ∈ {0,1,...,n}

a ∈ {0,1,...,m}



Rotation boxe: example

p(+1 |θ) =
1
2

(cos(θ) + 1)
θ

ei X
2 θ | ↑Z ⟩ X

{+1, − 1}



Rotation boxes

A preparation device with input                   and a measurement 
device with outcomes                           generate a probability 
distribution  

Preparation device and measurement device are initially 
uncorrelated (e.g. do not share an entangled state): semi-device 
independent regime.

p(a |θ) ∈ [0,1]

θ ∈ [0,2π)
a ∈ {1,...,m}



Prepare and measure scenario

a

p(a |θ)

α

a

Preparation box Measurement box

p(a |θ − α) = q(a |θ)



Quantum rotation boxes

a

p(a |θ) = Tr(UθρU†
θ Ea)

θ

ρ {Ea}a∈𝒜ρ ↦ UθρU†
θ

POVM
(Projective) unitary  

representation

Density operator

ℂdSystem



Quantum spin 1/2 correlations (A = 2)

Uθ = eiZθ = (e−i θ
2 0

0 ei θ
2 )

p(a |θ) = ⟨ψ |UθEaU†
θ |ψ⟩ = c0 + c1 cos(θ) + s1 sin(θ)

𝒬2
1
2

= {p(a |θ) = {⟨ψ |UθEaU†
θ |ψ⟩ |ρ, Ea}

Set of  spin 1/2 quantum correlations



General spin 1/2 correlations

ℛ2
1
2

= {p(a |θ) = c0 + c1 cos(θ) + s1 sin(θ) |c0, c1, s1 ∈ ℝ, p(a |θ) ∈ [0,1]}

𝒬2
1
2

⊆ ℛ2
1
2

Can every trigonometric polynomial of  order 1 which is a valid probability 
be generated by a spin 1/2 quantum particle? 

𝒬2
1
2

= ℛ2
1
2
?



𝒬2
1
2

= ℛ2
1
2
?

Yes! 

p(a |θ) = c0 + c1 cos(θ) + s1 sin(θ) ∈ [0,1]Every can be realised on a qubit



Spin J quantum correlations

Uθ =
+J

⨁
j=−J

𝕀Nj
eijθ

General projective unitary representation of  SO(2):

J ∈ {0,
1
2

,1,
3
2

, . . . }

Observe only integers or half  integers can occur in the sum.



Spin J quantum correlations

Uθ = ei

−2 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 2

Uθ = ei

− 5
2 0 0 0 0 0

0 − 3
2 0 0 0 0

0 0 1
2 0 0 0

0 0 0 1
2 0 0

0 0 0 0 3
2 0

0 0 0 0 0 3
2



Spin J quantum correlations

p(a |θ) = Tr(UθρU†
θ Ea)

Uθ =
+J

⨁
j=−J

𝕀Nj
eijθ

𝒬J = {p(a |θ) |p(a |θ) = Tr(UθρU†
θ Ea)}

p(a |θ) ∈ 𝒬J ⟹ p(a |θ) = c0 +
2J

∑
j=1

cj cos( jθ) + sj sin( jθ)



Theorem

p(a |θ) ∈ ℚJ ⟹ ∃ |ψ⟩ ∈ ℂ2J+1

p(a |θ) = ⟨ψ |U†
θ EaUθ |ψ⟩

where  

Uθ = eiθZ, Z = diag(−J, − J + 1,...,J − 1,J)

J integer or half-integer



Theorem

Uθ = ei

−2 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 2

↦ ei

−2 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2



p(a |θ) = ⟨ψ |U†
θ EaUθ |ψ⟩

where  

Uθ = eiθZ, Z = diag(−J, − J + 1,..., J − 1, J), |ψ⟩ ∈ ℂ2J+1

p(a |θ) = c0 +
2J

∑
j=1

cj cos( jθ) + sj sin( jθ)

Spin J quantum correlations

𝒬J ⊂ 𝒬J+ 1
2



General spin J correlations

ℛJ := {p(a |θ) = c0 +
2J

∑
j=1

cj cos( jθ) + sj sin( jθ) |p(a |θ) ∈ [0,1]}

𝒬J ⊆ ℛJ



Main question of  the work

When does  ? 𝒬J = ℛJ

Does the requirement of  rotational covariance and fixed spin 
constrain probabilities to be quantum mechanical?

Analogous to question of  whether the no-signalling constraint 
implies quantum probabilities



Spin 1 quantum correlations

Uθ =
e−iθ 0 0

0 1 0
0 0 eiθ

|ψ⟩ ∈ ℂ3

p(a |θ) = ⟨ψ |U†
θ EaUθ |ψ⟩

p(a |θ) = c0 + c1 cos(θ) + s1 sin(θ) + c2 cos(2θ) + s2 sin(2θ)

Trigonometric polynomial of  degree 2



The case J = 1

p(a |θ) = c0 + c1 cos(θ) + s1 sin(θ) + c2 cos(2θ) + s2 sin(2θ)

p(a |θ) = (c0 c1 s1 c2 s2) ⋅

1
cos(θ)
sin(θ)

cos(2θ)
sin(2θ)



State space

Ω1 := Conv {

1
cos(θ)
sin(θ)

cos(2θ)
sin(2θ)

|θ ∈ [0,2π)}

Orbitope: convex hull of  the orbit of  a group acting on a vector



Effect space

ℰ1 := {(c0 c1 s1 c2 s2) | (c0 c1 s1 c2 s2) ⋅

1
cos(θ)
sin(θ)

cos(2θ)
sin(2θ)

∈ [0,1], ∀θ ∈ [0,2π)}

ℛ1 ≃ ℰ1

ℛ1 := {(c0, c1, s1, c2, s2) |c0 + c1 cos(θ) + s1 sin(θ) + c2 cos(2θ) + s2 sin(2θ) ∈ [0,1]}



Convex sets



Convex sets

A

B

λA + (1 − λ)B, λ ∈ [0,1]



Convex sets: extremal points



Convex sets: faces



Carathéodory orbitope

Ω1 := Conv {

1
cos(θ)
sin(θ)

cos(2θ)
sin(2θ)

|θ ∈ [0,2π)}

Well characterised as a convex set (facial structure known)



Space of  J =1 correlations

ℛ1 := {(c0, c1, s1, c2, s2) |c0 + c1 cos(θ) + s1 sin(θ) + c2 cos(2θ) + s2 sin(2θ) ∈ [0,1]}

Want to characterise the dual space



Prove that all extremal points of   are quantumly realisable with a spin 1 systemℛ1

ℛ1 = 𝒬1

Characterise all extremal points of   ℛ1

Space of  J =1 correlations



The case J = 3/2

p(a |θ) = c0 + c1 cos(θ) + s1 sin(θ) + c2 cos(2θ) + s2 sin(2θ) + c3 cos(3θ) + s3 sin(3θ)

p(a |θ) ∈ 𝒬3
2

⟹ c2 + s3 ≤
1

3
≲ 0.5774.

Theorem

Uses semi-definite program and analogue to Almost Quantum correlations



The case J = 3/2

p(a |θ) ∈ 𝒬3
2

⟹ c2 + s3 ≤
1

3
≲ 0.5774.

p⋆(θ) :=
2
5

+
1
4

sin θ +
7
20

cos(2θ) +
1
4

sin(3θ) ∈ [0,1]

c2 + s3 = 0.6

p⋆(θ) ∉ 𝒬3
2

p⋆(θ) ∈ ℛ3
2



p(a |θ) = c0 + c1 cos(θ) + s1 sin(θ) + c2 cos(2θ) + s2 sin(2θ) + c3 cos(3θ) + s3 sin(3θ)



The case J ≥ 2

P ∈ 𝒬J ⟹ (c2J−1 + s2J)[P] ≤ β =
1

3

P⋆
J (θ) :=

2J

∑
k=−2J

akeikθ, a−k = ak a0 =
1
2

a2J = −
i
8

a2J−1−2m =
3
16 (−

1
4 )

m

m = 0,…, ⌊J − 1⌋,

a2J−2−2l = −
3i
32 (−

1
4 )

l

l = 0,…, ⌈J − 2⌉ .

s2J + c2J−1 = 5/8 > β



Summary

ℛ0 = 𝒬0
ℛ1

2
= 𝒬1

2

ℛ1 = 𝒬1

ℛJ ⊊ 𝒬J, J ≥
3
2



How important is the fixed J assumption

Very! 

 can be realised by an infinite spin quantum system  

 Can also be realised by a classical system with configuration space 
 

No finite dimensional classical systems have a non-trivial 
representation of  SO(2)

ℛJ L2(S1)

S1



Finite dimensional classical systems

(p(0)
p(1)) p(0)

p(1)
p(2)



Infinite dimensional classical system

States are probability measures on circle.

Effects are response functions: e : S2 → [0,1]

δθ ↦ δθ+θ′ 

p(a |θ) = ∫ p(a |θ′ )δθ



Semi-device independence

For single systems cannot have full device independence. 

Any statistics can be simulated by a large enough classical system. 

Impose some constraint: e.g Hilbert space dimension. In this case a 
notion of  generalised spin.



Conclusion

SO(2) rotations do not constrain correlations to be quantum for 
  

SO(2) covariance + spin 1/2 or 1 implies quantum correlations.  

Future work: extension to SO(3) or Lorentz group.

J ≥
3
2


