Spin-bounded correlations: rotation boxes within and beyond quantum theory

10 01

Thomas Galley IQOQI- Vienna

November 2024 - YQIS Paris

Spin-bounded correlations: rotation boxes within and beyond quantum theory

Albert Aloy,^{1,2,*} Thomas D. Galley,^{1,2,†} Caroline L. Jones,^{1,2,‡} Stefan L. Ludescher,^{1,2,§} and Markus P. Müller^{1,2,3,¶} ¹Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, A-1090 Vienna, Austria ²Vienna Center for Quantum Science and Technology (VCQ), Faculty of Physics, University of Vienna, Vienna, Austria ³Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, Ontario N2L 2Y5, Canada (Dated: December 14, 2023)

$p(A, B | X, Y, \psi) = \begin{cases} p(x, y) \\ p(-x) \end{cases}$

Set of correlations for all possible quantum states and 2 outcomes measurements

$$\begin{array}{c} (+1, +1 \mid 0^{\circ}, 45^{\circ}, \psi) \\ \vdots \\ -1, -1 \mid 90^{\circ}, 135^{\circ}, \psi) \end{array} \in \mathbb{R}^{16} \end{array}$$

 $P_O := \{ p(A, B | X, Y, \psi) | \psi, X, Y \}$

 $P = \frac{1}{3} \bullet \blacksquare + \frac{1}{3} \bullet \blacksquare + \frac{1}{3} \blacksquare \bullet$

A = Square/Circle, B = Square/Circle, Green/Red

X = shape, colour

Green/Red

Y = shape, colour

 P_C set of correlations obtained when Alice and Bob share a classical system

 $p(A, B | X, Y, P) = \begin{pmatrix} p(G, G | C, C, P) \\ \vdots \\ p(\Box, \Box | S, S, P) \end{pmatrix} \in \mathbb{R}^{16}$

 $p(A, B | X, Y, P) = \sum p(\lambda | P)p(A | X, \lambda)p(B | Y, \lambda)$

A lesson from Bell's theorem P_C Classical correlations $p(A, B | X, Y, P) = \sum p(\lambda | P)p(A | X, \lambda)p(B | Y, \lambda)$ P_Q Quantum correlations $p(A, B | X, Y, P) = \operatorname{Tr}(\rho_P(X_A \otimes Y_R))$

Bell's theorem $P_C \subsetneq P_Q$

 $P_C \subseteq P_Q$

Bell's theorem

Bell inequality

 $P_C \subseteq P_Q$

 $P_C \subsetneq P_Q$

 P_{C}

 $\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \le 2$

p(A | X, Y, P) = p(A | X, P)A

It is not the same as locality/ parameter independence

A model which violates locality still leads to observed statistics which are no-signalling

No-signalling

 $p(A \mid X, Y, P) = p(A \mid X, P)$ p(B | X, Y, P) = p(B | Y, P)

No-signalling is purely operational

 $p(A | X, Y, \lambda) = p(A | X, \lambda)$

The space of no-signalling correlations

The set of all correlations which obey the no-signalling condition

 $p(A \mid X, Y, P) = p(A \mid X, P)$ $p(B \mid X, Y, P) = p(B \mid Y, P)$

 $P_C \subsetneq P_O \subseteq P_{NS}$

 $P_Q \subsetneq P_{NS}?$

Does the no-signalling principle fully determine the set of quantum correlations?

Cannot derive the set of quantum correlations from no-signalling principle alone

 $P_{O} \subsetneq P_{NS}$

NS PQ P_{C}

Does the no-signalling principle fully determine the set of quantum correlations?

 $\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \le 4$

 $\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \le 2\sqrt{2}$

 $\langle A_0 B_0 \rangle + \langle A_0 B_1 \rangle + \langle A_1 B_0 \rangle - \langle A_1 B_1 \rangle \le 2$

Can use inequalities as witnesses for membership in different sets

The general lessons

* A physical principle imposes constraints on the possible correlations * The quantumly realisable correlations are a subset of the general correlations

* Inequalities can be used to witness membership in different sets * Space-time structure does not single out quantum theory (in this case)

No-signalling is not the only relevant spatio-temporal feature!

* Spatio-temporal symmetry groups are a defining feature of spacetime.

quantum or is there a gap?

* Do space-time symmetries fully constrain probabilistic theories to be

Prepare and measure scenario

Preparation box

Outcome with probability p(a)

Measurement box

a

Rotation boxes

Preparation box

Preparation box has input $\theta \in [0, 2\pi)$ Typically input is $x \in \{0, 1, ..., n\}$

Outcome with probability a $p(a \mid \theta)$ $a \in \{0, 1, ..., m\}$

Measurement box

 $p(+1 | \theta) = \frac{1}{2}(\cos(\theta) + 1)$

Rotation boxes

* A preparation device with input $\theta \in [0,2\pi)$ and a measurement device with outcomes $a \in \{1, ..., m\}$ generate a probability distribution $p(a \mid \theta) \in [0,1]$

Preparation device and measurement device are initially uncorrelated (e.g. do not share an entangled state): semi-device independent regime.

Prepare and measure scenario

a

Preparation box

 $p(a \mid \theta)$

Measurement box

 $\alpha \quad p(a \mid \theta - \alpha) = q(a \mid \theta)$

Quantum rotation boxes

System \mathbb{C}^d

Density operator

(Projective) unitary representation

 $\rho \mapsto U_{\theta} \rho U_{\theta}^{\dagger}$

A

 $p(a \mid \theta) = \text{Tr}(U_{\theta} \rho U_{\theta}^{\dagger} E_{a})$

 $\{E_a\}_{a\in\mathcal{A}}$ POVM

Quantum spin 1/2 correlations (A = 2)

$p(a \mid \theta) = \langle \psi \mid U_{\theta} E_{a} U_{\theta}^{\dagger} \mid \psi \rangle = c_{0} + c_{1} \cos(\theta) + s_{1} \sin(\theta)$

 $\mathcal{Q}_{\frac{1}{2}}^{2} = \{ p(a \mid \theta) = \{ \langle \psi \mid U_{\theta} E_{a} U_{\theta}^{\dagger} \mid \psi \rangle \mid \rho, E_{a} \}$

Set of spin 1/2 quantum correlations

$\mathscr{R}_{\underline{1}}^{2} = \{ p(a \mid \theta) = c_{0} + c_{1} \cos(\theta) + s_{1} \sin(\theta) \mid c_{0}, c_{1}, s_{1} \in \mathbb{R}, p(a \mid \theta) \in [0, 1] \}$

Can every trigonometric polynomial of order 1 which is a valid probability be generated by a spin 1/2 quantum particle?

General spin 1/2 correlations

 $Q_{\frac{1}{2}}^2 = \mathcal{R}_{\frac{1}{2}}^2?$

Yes!

Every $p(a | \theta) = c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) \in [0,1]$ can be realised on a qubit

Spin J quantum correlations General projective unitary representation of SO(2): $U_{\theta} = \bigoplus^{+J} \mathbb{I}_{N_j} e^{ij\theta}$ j = -J $J \in \{0, \frac{1}{2}, 1, \frac{3}{2}, \dots\}$ Observe only integers or half integers can occur in the sum.

Spin J quantum correlations $\frac{5}{2}$ (-2)-1 0 0 $U_{\theta} = e^{i}$ $U_{\theta} = e^{i}$ 0 0 0 0 0 1 0 0 0 2 0 0 0

Theorem

$p(a \mid \theta) \in \mathbb{Q}_J \implies \exists \mid \psi \rangle \in \mathbb{C}^{2J+1}$

 $p(a \mid \theta) = \langle \psi \mid U_{\theta}^{\dagger} E_{a} U_{\theta} \mid \psi \rangle$

where

 $U_{\theta} = e^{i\theta Z}, Z = \text{diag}(-J, -J + 1, ..., J - 1, J)$

J integer or half-integer

Theorem

-20 0 -1 $\mapsto e^{i}$ 0 0 0

Spin J quantum correlations $p(a \mid \theta) = \langle \psi \mid U_{\theta}^{\dagger} E_{a} U_{\theta} \mid \psi \rangle$ where $U_{\theta} = e^{i\theta Z}, Z = \text{diag}(-J, -J + 1, ..., J - 1, J), |\psi\rangle \in \mathbb{C}^{2J+1}$ $p(a | \theta) = c_0 + \sum_{j=1}^{\infty} c_j \cos(j\theta) + s_j \sin(j\theta)$ j=1 $Q_J \subset Q_{J+\frac{1}{2}}$

General spin J correlations 2J $\mathcal{R}_J := \{ p(a \mid \theta) = c_0 + \sum_{i=1}^{n} c_i \cos(j\theta) + s_i \sin(j\theta) \mid p(a \mid \theta) \in [0,1] \}$ j=1 $Q_I \subseteq \mathcal{R}_I$

Main question of the work

When does $Q_I = \mathcal{R}_I$?

Does the requirement of rotational covariance and fixed spin constrain probabilities to be quantum mechanical?

Analogous to question of whether the no-signalling constraint implies quantum probabilities

Spin 1 quantum correlations

 $p(a \mid \theta) = \langle \psi \mid U_{\theta}^{\dagger} E_{a} U_{\theta} \mid \psi \rangle$

 $p(a \mid \theta) = c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) + c_2 \cos(2\theta) + s_2 \sin(2\theta)$

Trigonometric polynomial of degree 2

The case J = 1

$p(a \mid \theta) = c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) + c_2 \cos(2\theta) + s_2 \sin(2\theta)$

 $\frac{1}{\cos(\theta)}$ $p(a \mid \theta) = (c_0 \quad c_1 \quad s_1 \quad c_2 \quad s_2) \cdot \begin{bmatrix} \sin(\theta) \\ \cos(2\theta) \\ \sin(2\theta) \end{bmatrix}$

State space

 $\Omega_{1} := \operatorname{Conv} \left\{ \begin{cases} 1\\ \cos(\theta)\\ \sin(\theta)\\ \cos(2\theta)\\ \sin(2\theta) \end{cases} \middle| \theta \in [0, 2\pi) \} \right.$

Orbitope: convex hull of the orbit of a group acting on a vector

Effect space

$\mathcal{R}_1 := \{ (c_0, c_1, s_1, c_2, s_2) | c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) + c_2 \cos(2\theta) + s_2 \sin(2\theta) \in [0, 1] \}$

 $\mathcal{R}_1 \simeq \mathcal{E}_1$

$\cos(\theta)$ $\mathscr{E}_1 := \{ (c_0 \ c_1 \ s_1 \ c_2 \ s_2) | (c_0 \ c_1 \ s_1 \ c_2 \ s_2) \cdot | \sin(\theta) | \in [0,1], \forall \theta \in [0,2\pi) \}$ $\cos(2\theta)$ $sin(2\theta)$

Convex sets

Convex sets

B

A

$\lambda A + (1 - \lambda)B, \lambda \in [0,1]$

Convex sets: extremal points

Convex sets: faces

Carathéodory orbitope

Well characterised as a convex set (facial structure known)

Space of J =1 correlations

Want to characterise the dual space

 $\mathcal{R}_1 := \{ (c_0, c_1, s_1, c_2, s_2) | c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) + c_2 \cos(2\theta) + s_2 \sin(2\theta) \in [0, 1] \}$

Characterise all extremal points of \mathcal{R}_1

 $\mathcal{R}_1 = \mathcal{Q}_1$

Space of J =1 correlations

Prove that all extremal points of \mathcal{R}_1 are quantumly realisable with a spin 1 system

The case J = 3/2

$p(a \mid \theta) = c_0 + c_1 \cos(\theta) + s_1 \sin(\theta) + c_2 \cos(2\theta) + s_2 \sin(2\theta) + c_3 \cos(3\theta) + s_3 \sin(3\theta)$

Uses semi-definite program and analogue to Almost Quantum correlations

Theorem

 $p(a \mid \theta) \in \mathcal{Q}_{\frac{3}{2}} \implies c_2 + s_3 \leq \frac{1}{\sqrt{3}} \lesssim 0.5774.$

The case J = 3/2 $p^{\star}(\theta) := \frac{2}{5} + \frac{1}{4}\sin\theta + \frac{7}{20}\cos(2\theta) + \frac{1}{4}\sin(3\theta) \in [0,1]$ $p^{\star}(\theta) \in \mathcal{R}_{\frac{3}{2}}$ $c_2 + s_3 = 0.6$ $p(a \mid \theta) \in \mathbb{Q}_{\frac{3}{2}} \implies c_2 + s_3 \leq \frac{1}{\sqrt{3}} \lesssim 0.5774.$ $p^{\star}(\theta) \notin \mathbb{Q}_{\frac{3}{2}}$

 $P \in Q_J \implies (c_{2J})$ $P_J^{\star}(\theta) := \sum_{k=1}^{2J} a_k e^{ik\theta}, a_{-k} =$ k = -2J $a_{2J-1-2m} = \frac{3}{16} \left(\frac{1}{4} \right)^m$ 3i (32

The case $J \ge 2$

$$(-1 + s_{2J})[P] \le \beta = \frac{1}{\sqrt{3}}$$

$$= \overline{a_k} \ a_0 = \frac{1}{2} \ a_{2J} = -\frac{1}{8}$$

$$s_{2J} + c_{2J-1} = 5/8 >$$

$$m=0,\ldots,\lfloor J-1\rfloor,$$

$$l=0,\ldots,\left[J-2\right].$$

Summary $\mathcal{R}_0 = \mathcal{Q}_0$ $\mathscr{R}_{\frac{1}{2}} = \mathscr{Q}_{\frac{1}{2}}$ $\mathcal{R}_{1} = \mathcal{Q}_{1}$ $\mathcal{R}_{J} \subsetneq \mathcal{Q}_{J}, J \ge \frac{3}{2}$

How important is the fixed J assumption

* Very!

* \mathcal{R}_I can be realised by an infinite spin quantum system $L^2(S_1)$

* Can also be realised by a classical system with configuration space S

* No finite dimensional classical systems have a non-trivial representation of SO(2)

Finite dimensional classical systems

(p(0))

Infinite dimensional classical system

States are probability measures on circle.

Effects are response functions: $e: S^2 \rightarrow [0,1]$

 $\delta_{\theta} \mapsto \delta_{\theta+\theta'}$

 $p(a \mid \theta) = p(a \mid \theta')\delta_{\theta}$

Semi-device independence

* For single systems cannot have full device independence. * Any statistics can be simulated by a large enough classical system.

notion of generalised spin.

* Impose some constraint: e.g Hilbert space dimension. In this case a

Conclusion

* SO(2) rotations do not constrain correlations to be quantum for $J \ge \frac{3}{2}$

* SO(2) covariance + spin 1/2 or 1 implies quantum correlations.

Future work: extension to SO(3) or Lorentz group.

