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Key questions

- What is intrinsic about quantum randomness?
- How can we quantify intrinsic randomness?

- How do we extract maximal intrinsic randomness from a given
gquantum system?

- Why do we care?
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Ume of the mos! coumEnMITVe aspects of quanium theory i ns claim thar there 15 “imrmsic” mndomness m
i phy shoal wowld. Chummium infoomaion science bas gready progresed bn the snudy of imrinsic, or sscret, guan
i rerdomness im the pas decade. With much smphasis on device-indespendent and sermi-device-independent
boursds, one of the maow hicse gaestions has escaped attention: how much inmnssc msdomness can be exmessd
from a given saie o, and whes memremenis schieve this bound”! We answer thes queston Sor eee differen
resdoenness quamtifiers: e condiions] mis-entropy, he conditions] von Meumsnn enmopy, and the conditosal
s emarogy. For the tirst, we sobve the mis.man problem of findisg the progective messoremens thst minimizses
the maxinml guessing probability of an eavesdmopper. The resull (s that one can guaranies an smount of
condinonal min-comopy HZ_ = = log, IT__ (0 wish J:_'___l.ul il j-:vv-'?.‘:" by periormesg saitohle progeciive
meusurerents. For the condizional von Meunusmn eniropy., we find the the musimal value is B* = log,d = Sipl
with 503 thet von Neumann ensrogy of 5. while for the conditionnl max-eniropy, we find the maumal valus
Hig = Togad b log, A (e, where b ip) b e lrgea eigemalue of o, Optireal volues for 2 W7 ed
H,, e nckoeved by mensuring im amy hesis sha is unbimsed with respect 1 @ eigenbasis ol o, & well 2 by

inbeer, lesss INIMTIVE, ITENS IRSERELS

DCH: DT LiPhysBbey A MELIN G-

Introducvion. One ol the core differences between classical
and ymantum physics is the later’s probahilisic characer,
which is imeducible to igmomnce of usderdying vanables. This
diference has fundsmental implications for our workdview,
bist it is also sfiractive &5 a natural source of eEndomeess {or
peactical uses. Indeed. Geiger counting was alresdy used as
o spurce of physical mndompess in the second hall of the
2th century. In the past two decades, with the development
of quantism information science. o brge namber of quaniam
mndom mumsher genenutors (QRNGs) have been designed,
and many have been implemented, usually with Eght (zee
[ F.2] for comnprehensive reviews ). The amours of rondammess
is malamlly captured by the guesmy probahility Fae: the
higher the probahility tha the mndom varabie is guessed, the
smaller the randomness. The intuitive characterization was
found 1o have operatoanl meaning the min-entmopy Ho,, =
— o, Py, quuniifies (informafly) the fraction of perfect
codn towsses that can be extracted from a string generated by the
available source. But mmdonmess is not an absolue potion:
ooe hos o specify for whom the source should be partly un-
predictable. For mere sumpling purposes, il meight be sufficient
10 take the observed probshilities ar face value; for cryp
ingraphic applications, however, ane needs o estimate the
probability that mn odversary, Eve. goesses the cutoomes. The

resulting rendompess is called secred randomners, or riasic
Fnglne Ly

The compuiashon of intnnsic randomness oxing qoanbom
resources and ngainsd o quastum adversary hac been st
ied From different perspectives, When comsidering o mser
with classcal dun comedated winth quanium information m
the hands of on adversary, the min-entropy quantifies the
smotnd ol perfect rmedom hits tha the wer con estab
lish [3]. The question was alse addressed for the tusk of
quantum key dEstribution, which is the extraction of secna
shaned mundommness. I was in this conbex) that the idea of
device-independems cerificalion was bom: the possibility of
bounding the amount of ramdommess in a black-box setting,
based on the ohservason of Bell-poalocal cormelations: 4]
Next. it was moticed (b device-independent certification
can be performed for mndomnoess a5 well [506], providing
the first disuptive case for quantum modomeess in o oo
shared setting [7]. This breaktbrough happened as the mce
1o demonsirate loophole-free Bell lests was taking up speed.
There followed un explosion of designs and implemests
bons of (ENGs cerltfisble under varmoms assumgptions, from
device-independent. (disruptive, but hard 10 onplement), o
zemmi-device-independent i vanious forms, 1o flly chame
terizeid (practical amd fast. bul requirmg o precise modeling
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What is randomness?

randomness

noun U]
UKk ) /reendsmnas/ UsWd /ran.dam.nas/

Add to word fist =

the quality of being random (= happening, done, or chosen by chance rather than
according to a plan):

- Randomness is important for simulations, algorithms and cryptography.

Distinct concepts: statistical and intrinsic randomness.




Statistical randomness

- Are there any patterns in the N/

string?
0010110001.... \/

- Tested by statistical tests like
the Shannon entropy,

Z p(x) log, p(x) .

x=0,1

Alice



Intrinsic randomness

- Qutcomes are private i.e. they cannot be predicted by anyone.

) ©

?
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Eve Alice



Intrinsic randomness from superposition

Quantum state 0 p>0, trp="1

Measurement || {M;} My >0, .M =I

Born rule : probability of outcome x = tr (My p)

- Pure states: p = [y v| 0)

- Rank-one projective
measurements: M; = |m;}mj|

Uniform distribution and perfect
Intrinsic randomness!



Mixed quantum states

- A mixed quantum state can be represented as a probabilistic
mixture of other quantum states,

P:ZP/‘P/’, Zp,-:1.
i i

0) 0) 0)
1) 1) 1)




A quantum eavesdropper

- You have a trusted quantum state p from an untrusted source.

+ The actual state [¢) or |[¢p_) In every round could be known by
an eavesdropper.



A quantum eavesdropper

\_/ - Eve knows the actual state in each round.

- Assume the decomposition p = > . pip; IS

\ optimal for Eve.

- It's equivalent? to say Eve steers the states
using a purification of p.

ClL. P. Hughston, R. Jozsa, and W. K. Wootters, A complete classification of quantum ensem-
bles having a given density matrix, Physics Letters A 183, 1418, 1993

10



Steering and state discrimination

Eve steers p; with probability p; ° .
W, N/
/\ Alice receives
/ / e

Alice measures

{Imi)}

Fve discriminates the states
{{m;|w)At}

Alice

\ -
e S

1



Alice’s measurement

To perform a more general measurement (POVM), we would need

- An additional quantum state

- An additional source of
randomness

We also show that coarse-graining does not increase randomness.

{10X01, 11, 12)X2] } — { 10X0] + [1X11, 12X2] }

12



Motivations

Why find the maximal intrinsic randomness of p?

- Quantifying

- Bound the functionality of
gquantumness?

guantum random number
generators (QRNGS).

CML outputs i -~
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Post-quantum
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Quantifying uncertainty

- We could use the family* of Renyi entropies H,,.

Of \
| | | f

Ho H H> H oo

- For randomness, we use the conditional quantum entropies’
and the classical-guantum state

e = ) Px (x| @ gk

xeX

where X Is the set of measurement outcomes.

*A Renyi, On measures of information and entropy, Proc. Symp. on Math., Stat. and Probability, 547-561, Berkeley, 1961.

TM. Muller-Lennert, F. Dupuis, O. Szehr, S. Fehr, and M. Tomamichel, On quantum Rényi entropies: A new generalization and some
properties. Journal of Mathematical Physics, 54(12), December 2013.

14



Conditional min-entropy

Hmin has the operational
Interpretation®

Eve steers
Hmin = — log, 'Dguess ; /\
where Pguess 1S the guessing
probability
P — M
guess = {p n}m{);, ZP, tr( '0’ Eve discriminates

Alice

subject to L J
\\If
ZP/P:‘ =p-
i

4 R.Konig, R. Renner, and C. Schaffner, The operational meaning of min-
and max-entropy, I[EEE Transactions on Information Theory 55, 4337, 2009

15



Conditional von Neumann entropy

- The von Neumann entropy Is

5(p) = —tr(plog, p) -

- (Glven a bipartite state par, the conditional
entropy 1S

H(A|E) = S(pae) — S(pe) -

- Interpretation as the communication cost
for quantum state merging®.

John von Neumann

al\/\. Horodecki, J. Oppenheim, A. Winter, Partial quantum information, Nature 436 (7051):
673-676, 2005

16



Conditional max-entropy

- For a tripartite state pagc, we have®

Hoin(AlC) = —Hmax(A|B) .

./
\/ - Hmax has an operational interpretation®
as the security of a secret key created
0010110001....
from the measurement outcomes.

AR Ren ner, Security of quantum key distribution, PhD thesis, 2006

bR. Konig, R. Renner, and C. Schaffner, The operational meaning of min- and max-
entropy, IEEE Transactions on Information Theory 55, 4337, 2009
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Important relation!

Hmin <H < Hmax

+ Hpin and Hmax bound H in the single-shot scenario (where Alice
makes the measurement only once).

18



Summary of results

*k
Hmin

H*

*
Hmax

log, d — 2log, tr\/p
log, d — S(p)

log, d + log, Amax(p)

Bounds on maximal conditional entropies.

Hx . (mily/pmiy = 3try/p forall i=1,...d
H* (mil p|mi) = 3 forall i=1,..,d
Hx (Mi|Umax)|” = 3 forall i=1,..,d

Necessary and sufficient conditions for Alice’s optimal measurement.

19



Qubit results

Consider a noisy qubit state

p=pl0Y0| +(1-p) 5

0)
1.0
0.8
‘_> H‘> 0.6
0.2
)

20



Min-entropy: fidelity

0)
- The fidelity F(p, o) measures
the distance between p and o,
=) +)
2
Fp0) = (try/vpovp) -
)

It was shown* that

Pguess(ﬂa {Mi}) = maax F(p,0),

where o I1s diagonal in {|{m;)}. Then

Pasess(p (M1}) > F(p,1/d) = (tr /7).

iP. J. Coles, Unification of different views of decoherence and discord, Physical Review A 85, 2012 1



Min-entropy: semidefinite programming

- Semidefinite programming (SDP)
Involves optimisation subject to
equality (X =Y) and inequality B (dual)
(X = Y) constraints.

- Every primal problem P has a dual p*
problem 3, with

max P = min (3.

- Since Pgess 1S an SDP, we can find

Pguess <p.

22



Min-entropy: square root measurements

Eve steers

- Given an ensemble {p;, pi}, a square /\
root measurement? (SRM) satisfies
_1 1
Mi:pipzlaipz. ’\/

- Optimal at state discrimination for

many ensembles. Eve discriminates
Alice

Eve
aP. Hausladen and W. K. Wootters, A ‘pretty good” measurement for
distinguishing quantum states, Journal of Modern Optics 41, 2385 (1994).

If Alice’'s measurement is optimal,

- In the steering picture, Alice performs a SRM.

- In the state discrimination picture, Eve performs a SRM.

23



Von Neumann entropy: statistical randomness

Hx . (mily/p|mi) = Jtry/p forall i=1,..,d
H* (milpImj) = 5 forall i=1,..,d
Hx {(Mi|umax)|” = 3 forall i=1,..,d

The probability of getting outcome 1 Is

P(1) = tr (pM;) = (milp|m;) .

- Maximal von Neumann entropy gives perfect statistical
randomness.

- Not necessarily true for the other entropies!

24



Max-entropy

- Remember that

- We find

Hrax(p) = log, d + logy Amax(p) = log, d — Huo(p) ,

where H(p) Is the non-conditional min-entropy of p.

25



Unbiased measurements

Hx . (mily/p|mi) = Jtry/p forall i=1,..,d

H (mil p|mi) = 1 forall i=1,...d

H* (M| Umax)|” = 3 forall i=1,..,d
(Mo
+ The bases {|m;)} and {|u;)} are 0 X

unbiased if and only if

\(uj\m,)}z :5 forall i,j.

0)
- If {|{m;)} is unbiased to the diagonal =)
basis of p, we maximise all three v
entropies.

1) 26




Inequivalent entropies

Consider a qutrit state diagonal Iin the basis {|i)},

A 0 O
p=10 X 0], A > A 2> A3
O 0 N

measured in the (not unbiased) basis {|m;)}, with

2=+ 24+ =3 2—n+m
|ms) :\/ o \1>+\/ c 2) + 5 3)

2 — - 2+ — 2 — -
\m2>:\/ 7625+73e,91 “>+\/ +7é %Jr\/ 725+728192‘3>'

+ Choose 7; = /A for H: . v = A for H* or v, = 73 for Hmax™

Different measurements maximise different entropies!

27



Optimal local measurements

Consider a state p diagonal in the basis {|v;)}, where w = e’

- There exists no separable basis
unbiased to {|v;)}.

- Numerically, we find optimal local
measurements for all three
entropies.

A

Alice

()\1 0 0 0)

o x 0 0
o o x
\0 0 0 X/
|¢1>=|00>
[tha) = (|01> +110) + 1))

S\ 5=

%\

5 (
7 (1

01) + w [10) +

01) + w” [10) + w

1)

N———

1)

N———

28




Limitations

- Device dependence: we need to know the complete
characterisation of the state p and the measurement.

- Does not allow for noisy measurements e.g.

|
M; = p|miXm;| + (1 —p)a-

0)

29



Future work

- Inverse problem: how much intrinsic randomness can we
extract from a quantum measurement?

0) 0) 0)

30



Take-home message

- Quantum randomness has an intrinsic, or
private, quality.

- We can extract

~in = log, d — 2log, tr\/p
H* = log, d — 5(p)
Hmax = 108, d + 10g; Amax ()

from a characterised state p.

- If in doubt, use a measurement unbiased to
the diagonal basis of p.

Merci!
Thank you! 31



Deleted scenes




Eve’'s guessing probability

- Alice performs a projective measurement
M = {M,’},’, such that /V','/V'j = M,’5,‘j.

- The probability that Eve correctly guesses Alice’s
measurement outcomes is a semidefinite N/
programming (SDP) problem

i Pi :
I

subjectto p; > 0, ZP:‘ =1, pi 20, ZP/P:‘ =p.
/ i

- Alice chooses M to minimise Eve's guessing
probability,

Pguess(p) — ”)\Ln 'Dguess(,O,M).



Previously known?® that

P — F
guess(pa M) {Jrggj;} (p,0),

where F is the Uhlmann fidelity

F(p,o) = (tr \/\/ﬁa\/ﬁ)z

and Z Is the set of states diagonal in the measurement basis
{|m;)}. Since I/d € Zx, for any M,

Pasess(, M) > F(p, T/d) = 5(tr /5)’.

§

P.J. Coles, Unification of different views of decoherence and discord, Physical Review A 85, 2012



The primal problem

Pguess(p, — {;napx Zp/ tr /p/

SUbjeCttO pi207 Zpi:17 pizov Zplplzp
i i

has a corresponding dual problem,

Payess(p, M) = mXin tr (Xp), subjectto X > M;.

When the measurement is optimal, we can use X = ”d pp—% to find

T
Pguess(p, M) < g (trv/p)° .

so the bound can be reached.



- It was shownT that

H = S(patter) — S(p)

where

patter = > _{Milp|m;) [m;Xmi]

I

IS Alice’s average post-measurement state.

* S(pafrer) reaches its maximal value of log, d If and only If
patter = 4, 1. paster IS Maximally mixed, and

H* = log, d — S(p) .

)l P.J. Coles, Unification of different views of decoherence and discord, Physical Review A 85, 2012



H.ax derivation

- We want to find

[
Psecr:dijF<PXEa a®0> .

- For rank-one projective measurements,

Psecr = mfx (Z \/tr (o Px ¢>§><w>§|)> ;

where |y%) are Eve's local states conditioned on outcome x.

- Using the Cauchy-Schwartz inequality and the SDP for the
largest eigenvalue of a quantum state,

pgecr S d mOaX tr (O'p) — d )\max (p) .



