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Bell's theorem

« Bells theorem states that some
quantum behaviours are not
local

« Thisis shown using a Bell
iInequality
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Bell's theorem

» There are many different
inequalities, which are violated
with different states to different
degrees.

» Then, how do we quantify the
strength’ of a violation?

P(a,b | x,y)

Correlations



Entanglement simulation

@ v
—
v #

P(a,b | x,y) = Tr(E @ IT} p)

Quantum correlations



Entanglement simulation

X Y

v \ \
F—t —4 (= = o
v v \ \

P(a,b | x,y) = Tr(TE @ T p) P(a,b| x,y) = sz qd) Pa | x, HP(b | y,2)

Quantum correlations Local correlations



Entanglement simulation
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Known results

« Consider the state

[w) =+/d|00) +4/1 —d|11)

« Toner and Bacon showed that the singlet only requires 1 bit.

« Renner and Quintino showed that 1 bit of communication is enough for
states for 0.835 < d < 1.

What about the rest of the two-qubit states?

Renner, M.J. and Quintino, M.T,, 2023. The minimal communication cost for simulating entangled qubits. Quantum, 7, p.1149.
Toner, B.F. and Bacon, D., 2003. Communication cost of simulating Bell correlations. Physical Review Letters, 91(18), p.187904. (figure)



The Toner-Bacon protocol (@ A’ oupu

A1, A5 are randomly uniformly —
d|S trlbu te d (b) Communication

1. Alice outputs

a= —sgn(x - /IAI)

2. Alice sends to Bob

(c) Bob’s output
3\1 :\1 + 5\2 <

c = sgn(x - /fl)sgn(fc - /1A2) S
3. Bob outputs “

b = sgn(y - (/fl + c/fz))

Toner, B.F. and Bacon, D., 2003. Communication cost of simulating Bell correlations. Physical Review Letters, 91(18), p.187904. (figure)
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Model an LHV strategy with a
Neural Network

« The parties will be represented
by a pair of NN.

« The Inputs are routed with the
locality constraint.

« LHV will be generated each
round and be accessible to
both.

+ P(a,b | x,v) is the output after
averaging over the LHV.
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Why use ML?

« Neural network can be used to model LHV strategies.

. When it cannot achieve a given set of P(a, b | x, V), it is a sign of a Bell
iInequality.

« On the other hand, If we train it over the set of all possible measurements,
we can get a simulation protocol.

18
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The Toner-Bacon protocol (@ A’ oupu

A1, A5 are randomly uniformly —
d|S trlbu te d (b) Communication

1. Alice outputs

a= —sgn(x - /IAI)

2. Alice sends to Bob

(c) Bob’s output
3\1 :\1 + 5\2 <

c = sgn(x - /fl)sgn(fc - /1A2) S
3. Bob outputs “

b = sgn(y - (/fl + c/fz))

20
Toner, B.F. and Bacon, D., 2003. Communication cost of simulating Bell correlations. Physical Review Letters, 91(18), p.187904. (figure)



The results

Non-maximally entangled states
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The results

Heuristic performance
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Beating entanglement with 1-bit

Physical Review A 109 (6), 062408
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Finding states that are unsimulatable

- Many two qubits are simulatable by one bit

« The rest are numerically simulatable to a large extent

So what states are unsimulatable with 1-bit?

24
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+ The set of all 1 bit behaviours
forms a polytope C
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The polytopes
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L :localset C:1bitset  O:quantum set

» Cruzeiro and Gisin showed that for 3 inputs and 2 outputs, O C C

» Vertesi and Bene showed that O € Cin (00, 00,4,4) with a Bell inequality
for C.

+ Marton et al. showed that O € Cin (5,3,16,16) with a Bell inequality for C.

Can we beat 1 bit in a smaller scenario?

Zambrini Cruzeiro, E. and Gisin, N., 2019. Bell inequalities with one bit of communication. Entropy, 21(2), p.171.
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Computing C

» Facet enumeration of C' is quickly infeasible.

 Parallel repetition results in large sizes of games.

- We devised a method to calculate the 1-bit bound S of a given Bell
iInequality quickly.
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The notation

« We can write a Bell inequality as

Z Va,b,x,yP(aa b ‘ X, y) < SL

a,b,x,y

« We can write this out on a table

Voooo Vo100 | Vooo1 Voio1 1 0({1 0

7_ Viooo Viio00|Vico1 Viio1 I |0 1(0 1
= CHSH =

Vooio Vo110 | Voo1r Vo111 1 00 1

Vioio Viiio | Vior Viiin 0 1|1 0

Zhen, Y.Z., Goh, KT., Zheng, Y.L, Cao, W.F, Wu, X,, Chen, K. and Scarani, V., 2016. Nonlocal games and optimal steering at the boundary of the quantum set. Physical
Review A, 94(2), p.022116. (figure)



The method
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Bell inequality for 1-bit of
communication

» Truncated XOR game in 5d.

+ Localscore §; =6

« Quantum score

7.1777 < S, < 7.1788

- 1bitscore S, =7
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Conclusion

« Two-qubits states can be closely approximated with one bit of
communication.

« Two-qu-5-its states cannot be simulated with one bit of communication.
This i1s shown with a (5,2,5,5) inequality.

31






The outputs of Alice are of the form of
1 -
P(Al = +1 | &) — 5(1 — Sgn(& . >\a1 + bal))7

where 5\a1 = Uy Xl — )\_é + v,12 decides the hemisphere direction and b,; =
Wa1 + Ta1 A1 - 2 + Yg1 A2 - 2 decides the size of the hemisphere. Similarly,

1 -
P(A2 = +1 ‘ &) — 5(1 -+ Sgﬂ(& : )\a2 + ba2))7

N 1 Ao
P(Bl = +1 ‘ b) = 5(1 ‘|‘Sgn(b : )\bl + bbl))7

A 1 ~A o
P(B2 = —|—1 ‘ b) = 5(1 — Sgﬂ(b . )\bg + bbg)).

Using numerical algorithms, we can approximately obtain the relevant co-
efficients for the different states.

The (simplified) bit of communication is given by

Ple=+1]a) = 5(1 - clip(fe, ~1,1))

where

with b, = ue + ve(Xa - 2)(1 — X1 - 2) and the clip function is defined as

(0 ifx<a

clip(x,a,b) =<b ifx>b

& otherwise

Again, the relevant coefficients are obtained using numerical methods.
33
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