An introduction to quantum nonlocality Tutorial: Quantum foundations

Martin J. Renner, University of Vienna

Paris, 4th November 2024, WAQ

Content of the talk

- Bell's theorem
- Toner-Bacon model
- Random Access Coding
- Hardy's paradox
- Elitzur-Vaidman bomb tester
- Werner's model

EPR argument

$$|\Psi
angle_{AB}=rac{1}{\sqrt{2}}(|01
angle-|10
angle)$$

- Uncertainty: Cannot measure \vec{z} and \vec{x} simultaneously
- Anticorrelation when Alice and Bob measure the same direction

"While we have thus shown that the wave function does not provide a complete description of the physical reality, we left open the question of whether or not such a description exists. We believe, however, that such a theory is possible."

A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

EPR argument

$$|\Psi
angle_{AB}=rac{1}{\sqrt{2}}(|01
angle-|10
angle)$$

- Uncertainty: Cannot measure \vec{z} and \vec{x} simultaneously
- Anticorrelation when Alice and Bob measure the same direction

"While we have thus shown that the wave function does not provide a complete description of the physical reality, we left open the question of whether or not such a description exists. We believe, however, that such a theory is possible."

A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)

Bell

$$\ket{\Psi}_{AB} = rac{1}{\sqrt{2}} (\ket{01} - \ket{10})$$

Hidden variable model:

	Alice's measurement	Bob's measurement
λ_1	(+z; +x)	(-z; -x)
λ_2	(+z; -x)	(-z; +x)
λ_3	(-z; +x)	(+z; -x)
λ_4	(-z; -x)	(+z; +x)

$$p(a,b|x,y) = \sum_{i=1}^{4} \frac{1}{4} p_A(a|x,\lambda_i) \cdot p_B(b|y,\lambda_i)$$

Bell

$$|\Psi
angle_{AB}=rac{1}{\sqrt{2}}(|01
angle-|10
angle)$$

Hidden variable model:

	Alice's measurement	Bob's measurement
λ_1	(+z; +x)	(-z; -x)
λ_2	(+z; -x)	(-z; +x)
λ_3	(-z; +x)	(+z; -x)
λ_4	(-z; -x)	(+z; +x)

$$p(a,b|x,y) = \sum_{i=1}^{4} \frac{1}{4} p_A(a|x,\lambda_i) \cdot p_B(b|y,\lambda_i)$$

$$\ket{\Psi}_{AB} = rac{1}{\sqrt{2}} (\ket{01} - \ket{10})$$

Hidden variable model: ???

	Alice's measurement	Bob's measurement
λ_1	(+z; +x)	$(-y_1; -y_2)$
λ_2	(+z; -x)	$(-y_1; +y_2)$
λ_3	(-z; +x)	$(+y_1; -y_2)$
λ_4	(-z; -x)	$(+y_1;+y_2)$

 $p(a, b|x, y) \neq \sum_{i} p(\lambda_i) p_A(a|x, \lambda_i) \cdot p_B(b|y, \lambda_i)$

$$|\Psi
angle_{AB}=rac{1}{\sqrt{2}}(|01
angle-|10
angle)$$

CHSH inequality as a game:

	$+\vec{y_1}$	$-\vec{y_1}$	$+\vec{y}_2$	$-\vec{y}_2$
$+\vec{x_1}$	0.07	0.43	0.07	0.43
$-\vec{x_1}$	0.43	0.07	0.43	0.07
$+\vec{x_2}$	0.07	0.43	0.43	0.07
$-\vec{x_2}$	0.43	0.07	0.07	0.43

$$|\Psi
angle_{AB}=rac{1}{\sqrt{2}}(|01
angle-|10
angle)$$

CHSH inequality as a game:

	$+\vec{y_1}$	$-\vec{y_1}$	$+\vec{y}_2$	$-\vec{y}_2$
$+\vec{x_1}$	0.07	0.43	0.07	0.43
$-\vec{x_1}$	0.43	0.07	0.43	0.07
$+\vec{x_{2}}$	0.07	0.43	0.43	0.07
$-\vec{x_2}$	0.43	0.07	0.07	0.43

Winning probability: 85%

$$|\Psi
angle_{AB}=rac{1}{\sqrt{2}}(|01
angle-|10
angle)$$

CHSH inequality as a game:

with predetermined strategy: $\lambda_A = (+,+)$, $\lambda_B = (-,-)$

	$ +\vec{y_1} $	$-\vec{y_1}$	$+\vec{y}_2$	$-\vec{y}_2$
$+\vec{x_1}$	0	1	0	1
$-\vec{x_1}$	0	0	0	0
$+\vec{x_{2}}$	0	1	0	1
$-\vec{x_2}$	0	0	0	0

Winning probability: 75%

$$|\Psi_{AB}\rangle = rac{1}{\sqrt{2}}(|01\rangle - |10\rangle)$$

• Correlations: $p(a = \pm 1, b = \pm 1 | \vec{x}, \vec{y}) = (1 - (ab) \vec{x} \cdot \vec{y})/4$

Bell's theorem:

Correlations cannot be reproduced with local hidden variables!

• Correlations: $p(a = \pm 1, b = \pm 1 | \vec{x}, \vec{y}) = (1 - (ab) \vec{x} \cdot \vec{y})/4$

Bell's theorem:

Correlations cannot be reproduced with local hidden variables!

Correlations: $p(a, b | \vec{x}, \vec{y}) = (1 - (ab) \ \vec{x} \cdot \vec{y})/4$

Question:

Can we simulate these correlations with local hidden variables plus some classical communication?

- Maudlin (1992): LHV + infinite communication
- Brassard, Cleve, Tapp (1999): LHV + 8 bits
- Toner and Bacon (2003): LHV + 1 bit

Correlations: $p(a, b | \vec{x}, \vec{y}) = (1 - (ab) \ \vec{x} \cdot \vec{y})/4$

Question:

Can we simulate these correlations with local hidden variables plus some classical communication?

- Maudlin (1992): LHV + infinite communication
- Brassard, Cleve, Tapp (1999): LHV + 8 bits

Toner and Bacon (2003): LHV + 1 bit

Correlations: $p(a, b | \vec{x}, \vec{y}) = (1 - (ab) \ \vec{x} \cdot \vec{y})/4$

Question:

Can we simulate these correlations with local hidden variables plus some classical communication?

- Maudlin (1992): LHV + infinite communication
- Brassard, Cleve, Tapp (1999): LHV + 8 bits

Toner and Bacon (2003): LHV + 1 bit

Correlations: $p(a, b | \vec{x}, \vec{y}) = (1 - (ab) \ \vec{x} \cdot \vec{y})/4$

Question:

Can we simulate these correlations with local hidden variables plus some classical communication?

- Maudlin (1992): LHV + infinite communication
- Brassard, Cleve, Tapp (1999): LHV + 8 bits
- Toner and Bacon (2003): LHV + 1 bit

0. Alice and Bob share two random vectors $\vec{\lambda}_1, \vec{\lambda}_2 \in S_2$

Alice:

- 1. choose measurement \vec{x}
- 2. select $\vec{\lambda}_i$ closest to $\pm \vec{x}_i$
- 3. output $a = -sgn(\vec{x} \cdot \vec{\lambda}_i)$

- 4. choose measurement \vec{y}
- 5. output $b = sgn(\vec{y} \cdot \vec{\lambda}_i)$

0. Alice and Bob share two random vectors $\vec{\lambda}_1, \vec{\lambda}_2 \in S_2$

Alice:

1. choose measurement \vec{x} 2. select $\vec{\lambda}_i$ closest to $\pm \vec{x}$ 3. output $a = -sgn(\vec{x} \cdot \vec{\lambda}_i)$

- 4. choose measurement \vec{y}
- 5. output $b = sgn(\vec{y} \cdot \vec{\lambda}_i)$

0. Alice and Bob share two random vectors $\vec{\lambda}_1, \vec{\lambda}_2 \in S_2$

Alice:

- 1. choose measurement \vec{x}
- 2. select $\vec{\lambda}_i$ closest to $\pm \vec{x}$

3. output $a = -sgn(\vec{x} \cdot \vec{\lambda}_i)$

- 4. choose measurement \vec{y}
- 5. output $b = sgn(\vec{y} \cdot \vec{\lambda}_i)$

0. Alice and Bob share two random vectors $\vec{\lambda}_1, \vec{\lambda}_2 \in S_2$

Output: "a = -1"

Alice:

- 1. choose measurement \vec{x}
- 2. select $\vec{\lambda}_i$ closest to $\pm \vec{x}$
- 3. output $a = -sgn(\vec{x} \cdot \vec{\lambda}_i)$

- 4. choose measurement \vec{y}
- 5. output $b = sgn(\vec{y} \cdot \vec{\lambda}_i)$

0. Alice and Bob share two random vectors $\vec{\lambda}_1, \vec{\lambda}_2 \in S_2$

Output: $a = -1^{"}$

Alice:

- 1. choose measurement \vec{x}
- 2. select $\vec{\lambda}_i$ closest to $\pm \vec{x}$
- 3. output $a = -sgn(\vec{x} \cdot \vec{\lambda}_i)$

- 4. choose measurement \vec{y}
- 5. output $b = sgn(\vec{y} \cdot \vec{\lambda}_i)$

0. Alice and Bob share two random vectors $ec{\lambda}_1, ec{\lambda}_2 \in S_2$

Alice:

- 1. choose measurement \vec{x}
- 2. select $\vec{\lambda}_i$ closest to $\pm \vec{x}$
- 3. output $a = -sgn(\vec{x} \cdot \vec{\lambda}_i)$

Bob: 4. choose measurement \vec{y} 5. output $b = sgn(\vec{y} \cdot \vec{\lambda}_i)$

0. Alice and Bob share two random vectors $ec{\lambda}_1, ec{\lambda}_2 \in S_2$

- 2. select $\vec{\lambda}_i$ closest to $\pm \vec{x}$
- 3. output $a = -sgn(\vec{x} \cdot \vec{\lambda}_i)$

5. output $b = sgn(\vec{y} \cdot \vec{\lambda}_i)$

 $p(a,b) = (1-(ab) \ \vec{x} \cdot \vec{y})/4$

Qubit Prepare-and-Measure scenario

Task: Random Access Coding

Winning probabilities for different resources:

- 1 Bit: 75 %
- 2 Bits: 100 %

▶ 1 Qubit: 85 %

Quantum advantage: 1 Bit < 1 Qubit

Task: Random Access Coding

Winning probabilities for different resources:

- 1 Bit: 75 %
- 2 Bits: 100 %
- 1 Qubit: 85 %

Quantum advantage: 1 Bit < 1 Qubit

Task: Random Access Coding

Qubit strategy:

- Alice prepares one of four states (according to her input)
- ▶ Bob measures either in $\vec{y_1}$ or $\vec{y_2}$ basis, depending on which bit he wants to read out

Winning probability: 85 %

S. Wiesner, Conjugate Coding, SIGACT News. 15 (1): 78-88 (1983)

What about a general task?

Winning probabilities for different resources?

Main message: 1 Bit < 1 Qubit \leq 2 Bits

Why? Two bits can simulate all qubit correlations!

What about a general task?

Winning probabilities for different resources?

Main message: 1 Bit < 1 Qubit \leq 2 Bits

Why? Two bits can simulate all qubit correlations!

0. Alice and Bob share random vectors $\vec{\lambda}_1, \vec{\lambda}_2 \in S_2$ $(\vec{\lambda}_3 = -\vec{\lambda}_1, \vec{\lambda}_4 = -\vec{\lambda}_2)$

Alice:

- 1. select state \vec{v}
- 2. select $\vec{\lambda}_i$ closest to \vec{v}
- 3. send *i*

Bob: 4. select measurement \vec{y} 5. output $b = sgn(\vec{y} \cdot \vec{\lambda}_i)$

 $p(b=\pm 1)=(1\pm ec{v}\cdotec{y})/2$

0. Alice and Bob share random vectors $\vec{\lambda}_1, \vec{\lambda}_2 \in S_2$ $(\vec{\lambda}_3 = -\vec{\lambda}_1, \vec{\lambda}_4 = -\vec{\lambda}_2)$

Alice:

- 1. select state \vec{v}
- 2. select $\vec{\lambda}_i$ closest to \vec{v}
- 3. send *i*

- 4. select measurement \vec{y}
- 5. output $b = sgn(\vec{y} \cdot \vec{\lambda}_i)$ $p(b = \pm 1) = (1 \pm \vec{v} \cdot \vec{y})/2$

$$p(b = \pm 1 | \vec{v}, \vec{y}) = (1 \pm \vec{v} \cdot \vec{y})/2$$

Idea: Selected $\vec{\lambda}$ forms a LHV model of the qubit state \vec{v}

B. F. Toner and D. Bacon, PRL 91, 187904 (2003) M. J. Renner, A. Tavakoli, and M. T. Quintino, PRL 130, 120801 (2023)

$$p(b = \pm 1 | \vec{v}, \vec{y}) = (1 \pm \vec{v} \cdot \vec{y})/2$$

Idea: Selected $\vec{\lambda}$ forms a LHV model of the qubit state \vec{v}

B. F. Toner and D. Bacon, PRL 91, 187904 (2003)
 M. J. Renner, A. Tavakoli, and M. T. Quintino, PRL 130, 120801 (2023)

Interesting open problems

- One bit for every entangled qubit pair?
- Simulating higher dimensional systems
- Simulating multipartite systems, sequential scenarios, entanglement assisted scenarios, ...

Hardy's paradox

Hardy's paradox

Hardy's paradox

Winning probability: 79% > 75%

Elitzur-Vaidman bomb tester

- A single photon can trigger the bomb
- > You don't know if the bomb is real or fake

Elitzur-Vaidman bomb tester

If "D" clicks: Bomb is real but did not explode!

Alice and Bob share a product state $\rho_{AB} = \rho_A \otimes \rho_B$

 $p(a, b|x, y) = tr[(A_{a|x} \otimes B_{b|y}) \ \rho_{AB}] = tr[A_{a|x} \ \rho_{A}] \cdot tr[B_{b|y} \ \rho_{B}]$

 \Longrightarrow p(a,b|x,y)=p(a|x) $\cdot p(b|y)$ (local model)

Alice and Bob share a product state $\rho_{AB} = \rho_A \otimes \rho_B$

 $p(a,b|x,y) = tr[(A_{a|x} \otimes B_{b|y}) \ \rho_{AB}] = tr[A_{a|x} \ \rho_{A}] \cdot tr[B_{b|y} \ \rho_{B}]$

 \implies p(a,b|x,y)=p(a|x)·p(b|y) (local model)

Alice and Bob share a separable state $\rho_{AB} = \sum_{\lambda} p(\lambda) \ \rho_A^{\lambda} \otimes \rho_B^{\lambda}$

 $p(a, b|x, y) = tr[(A_{a|x} \otimes B_{b|y}) \ \rho_{AB}] = \sum_{\lambda} p(\lambda) \ tr[A_{a|x} \ \rho_{A}^{\lambda}] \cdot tr[B_{b|y} \ \rho_{B}^{\lambda}]$

 \Rightarrow p(a,b|x,y)= $\sum_{\lambda} p(\lambda) p(a|x,\lambda) \cdot p(b|y,\lambda)$ (local model)

Alice and Bob share a separable state $\rho_{AB} = \sum_{\lambda} p(\lambda) \ \rho_A^{\lambda} \otimes \rho_B^{\lambda}$

 $p(a, b|x, y) = tr[(A_{a|x} \otimes B_{b|y}) \ \rho_{AB}] = \sum_{\lambda} p(\lambda) \ tr[A_{a|x} \ \rho_{A}^{\lambda}] \cdot tr[B_{b|y} \ \rho_{B}^{\lambda}]$

 \implies p(a,b|x,y)= $\sum_{\lambda} p(\lambda) p(a|x,\lambda) \cdot p(b|y,\lambda)$ (local model)

Alice and Bob need to share an entangled state $\rho_{AB} \neq \sum_{\lambda} p(\lambda) \ \rho_A^{\lambda} \otimes \rho_B^{\lambda}$

Do all entangled states violate a Bell inequality?

- pure states: yes (Gisin's theorem)
- mixed states: no (Werner's model)

N. Gisin, Bell's inequality holds for all non-product states, Physics Letters A 154, 201-202 (1991) R. F. Werner, Quantum states with EPR correlations admitting a hidden-variable model, Phys. Rev. A 40, 4277–4281 (1989)

▶ entangled for $\eta \ge 1/3$: $\rho_W' \ne \sum_{\lambda} p(\lambda) \ \rho_A^{\lambda} \otimes \rho_B^{\lambda}$ ▶ local for $\eta \le 1/2$: $p(a, b|x, y) = \int d\lambda \ p(\lambda) p_A(a|x, \lambda) \ p_B(b|y, \lambda)$

R. F. Werner, Phys. Rev. A 40, 4277–4281 (1989)

• entangled for $\eta \ge 1/3$: $\rho_W^\eta \ne \sum_{\lambda} p(\lambda) \ \rho_A^\lambda \otimes \rho_B^\lambda$

• local for $\eta \leq 1/2$: $p(a, b|x, y) = \int d\lambda \ p(\lambda) p_A(a|x, \lambda) \ p_B(b|y, \lambda)$

R. F. Werner, Phys. Rev. A 40, 4277–4281 (1989)

▶ local for $\eta \leq 1/2$: $p(a, b|x, y) = \int d\lambda \ p(\lambda)p_A(a|x, \lambda) \ p_B(b|y, \lambda)$

R. F. Werner, Phys. Rev. A 40, 4277-4281 (1989)

$$ho_W^\eta = rac{1}{\sqrt{2}} \ket{\Psi^-} ig\langle \Psi^-
vert + (1-rac{1}{\sqrt{2}}) \ rac{1}{4}$$

$$ho_W^\eta = rac{1}{\sqrt{2}} \ket{\Psi^-} ig\langle \Psi^-
vert + (1-rac{1}{\sqrt{2}}) \ rac{1}{4}$$

$$ho_W^\eta = rac{1}{\sqrt{2}} \ket{\Psi^-} ig\langle \Psi^-
vert + (1-rac{1}{\sqrt{2}}) \ rac{1}{4}$$

$$ho_W^\eta = rac{1}{\sqrt{2}} \ket{\Psi^-} ig\langle \Psi^-
vert + (1-rac{1}{\sqrt{2}}) \ rac{1}{4}$$

Local Hidden State model:

Local Hidden State model:

$$ho_{W}^{\eta}=rac{1}{\sqrt{2}}\ket{\Psi^{-}}ra{\Psi^{-}}+\left(1-rac{1}{\sqrt{2}}
ight)rac{1}{4}$$

Measurements on real Werner state:

Local Hidden State model:

 $\implies tr[(A_{a|x} \otimes B_{b|y}) \ \rho_W^{\eta}] = \sum_{i=1}^4 \ \frac{1}{4} p_A(a|x, \vec{\lambda}_i) \ tr[B_{b|y} \ \rho_{\vec{\lambda}_i}]$

Werner's model

 $A_{\pm|x} = \frac{1}{2} (\mathbb{1} \pm \vec{x} \cdot \vec{\sigma})$

 $\rho_{\pm|x} = \frac{1}{2} (\mathbb{1} \mp \frac{1}{2} \vec{x} \cdot \vec{\sigma})$

 $p(a,b|x,y) = tr[(A_{a|x} \otimes B_{b|y})\rho_W^{1/2}] = \int_{\mathcal{S}_2} \mathrm{d}\vec{\lambda} \ p_A(a|x,\vec{\lambda}) \ tr[B_{b|y} \ \rho_{\vec{\lambda}}]$

Werner's model

1. Hidden state $\vec{\lambda}$ 2. $p_A(\pm | \vec{x}, \vec{\lambda}) = -sign(\vec{x} \cdot \vec{\lambda})$

3. Average

- R. F. Werner, Phys. Rev. A 40, 4277-4281 (1989)
- J. Barrett, Phys. Rev. A 65, 042302 (2002)
- A. Acín, N. Gisin, and B. Toner, Phys. Rev. A 73, 062105 (2006)
- T. Vértesi, Phys. Rev. A 78, 032112 (2008)
- F. Hirsch, M. T. Quintino, T. Vértesi, M. Navascués, and N. Brunner, Quantum 1, 3 (2017)
- M. Oszmaniec, L. Guerini, P. Wittek, and A. Acín, Phys. Rev. Lett. 119, 190501 (2017)
- S. Designolle et al., Phys. Rev. Research 5, 043059 (2023)
- M. Renner, Phys. Rev. Lett. 132, 250202 (2024)
- Y. Zhang and E. Chitambar, Phys. Rev. Lett. 132, 250201 (2024)

Open question: Role of POVMs in nonlocality

Does there exists a state ρ_{AB} such that:

Local for all projective measurements $(A_{a|x} = A_{a|x}^2, B_{b|y} = B_{b|y}^2)$: $p(a, b|x, y) = tr[(A_{a|x} \otimes B_{b|y})\rho_{AB}] = \int d\lambda \ p_A(a|x, \lambda) \ p_B(b|y, \lambda)$

Non-local for general POVMs: $p(a, b|x, y) = tr[(A_{a|x} \otimes B_{b|y})\rho_{AB}] \neq \int d\lambda \ p_A(a|x, \lambda) \ p_B(b|y, \lambda)$

Super-activation of quantum nonlocality

Single copy: Local model for all measurements

▶ Joint measurements on several qubits ⇒ Bell violation

Can all entangled states demonstrate Bell nonlocality?

C. Palazuelos, Phys. Rev. Lett. 109, 190401 (2012)

D. Cavalcanti, A. Acin, N. Brunner, T. Vertesi, Phys. Rev. A 87, 042104 (2013)

Super-activation of quantum nonlocality

Single copy: Local model for all measurements

▶ Joint measurements on several qubits ⇒ Bell violation

Can all entangled states demonstrate Bell nonlocality?

C. Palazuelos, Phys. Rev. Lett. 109, 190401 (2012)

D. Cavalcanti, A. Acin, N. Brunner, T. Vertesi, Phys. Rev. A 87, 042104 (2013)