Quantum Algorithms for Optimization

Ronald de Wolf

UNIVERSITEIT VAN AMSTERDAM

Optimization

General problem: $\min_{x \in K} f(x)$

 \blacktriangleright Finding the shortest route on a given map

▶ Designing a more energy-efficient chip

▶ Training your neural network to detect cats

Discrete and continuous settings for optimization

Discrete optimization: variables are discrete (bits, integers)

- ▶ Shortest path algorithms
- \blacktriangleright Matching algorithms
- \blacktriangleright Max flow / Min cut in a network
- ▶ Often discrete optimization problems are NP-hard: Constraint-satisfaction, TSP, integer linear programs . . .

Continuous optimization: variables are continuous (reals)

- ▶ Gradient descent
- ▶ Linear programs, semidefinite programs
- ▶ Non-convex optimization

Or a mix of these:

- \blacktriangleright LP/SDP-relaxation of discrete problems (max-cut in a graph)
- **•** Graph sparsification to solve Laplacian linear system $Lx = b$

How can quantum computers help?

- \triangleright Faster optimization is one of the main potential application areas of quantum computers (along with crypto & simulation)
- ▶ Several new quantum algorithms discovered in last 5-10 years
- \triangleright Goal of this talk: survey what we know
- ▶ I'll focus on what I'm most familiar with: provable speed-ups. Not on heuristics: adiabatic algorithm, annealing, variational algorithms like QAOA (Farhi-Goldstone-Gutmann'14): Low-depth quantum circuit parametrized by few parameters. Run it, measure the output, adjust parameters to improve. Hope to do something useful

Two big caveats for the provable speed-ups

- 1. Most optimization speed-ups \leq quadratic. Is this any good? Compare quantum cost C √ n vs classical cost n: quantum beats classical for instance size $n > C^2$. If $C \sim 10^{10}$, then need huge $n > 10^{20}$ before get speed-up
- 2. If we are given classical data (eg, input graph, or constraint matrix) we should be able to access this in superposition. Classical n-bit RAM is a piece of hardware of size \sim n that can be accessed in \sim log n steps n leaves $Quantum$ RAM should be the same, accessible in superposition, $|i, 0\rangle \mapsto |i, x_i\rangle$ Hard to implement with noise

Does this mean these quantum optimization algorithms are useless? No, but they're probably not for the near term

Discrete optimization

Quantum speed-up for discrete optimization

 \blacktriangleright These typically use Grover's quantum search as a blackbox within larger, often re-designed classical algorithm. Grover finds a solution in a size- n search space in time $O(\sqrt{n})$ √ n)

- ▶ Find the minimum of $f: \{1, ..., n\} \to \mathbb{R}$ in $O(\sqrt{n})$ f-evaluations and other operations (Dürr-Høyer'96)
- \blacktriangleright Finding shortest path in an *n*-vertex graph classical complexity of $O(n^2)$ (Dijkstra'56) vs quantum complexity $O(n^{1.5})$ (DHHM'04)

▶ Polynomial speed-ups for matching, other graph problems

Sparsification: less is more!

Graph sparsification

- ▶ Graph $G = (V, E, w)$ with $n = |V|$ vertices, $m = |E|$ edges, weight function $w : E \to \mathbb{R}_{\geq 0}$. Given as adjacency list
- \triangleright Goal: sparsify (ie reduce m) while preserving many properties

$$
\blacktriangleright \text{ Laplacian } L_G = \sum_{e \in E} w(e) L_e; \quad L_{(i,j)} = (e_i - e_j)(e_i - e_j)^T
$$

An ε -spectral sparsifier of G is graph $H = (V, E' \subseteq E, w')$ s.t. for all $x \in \mathbb{R}^n$: $x^{\mathcal{T}} L_G x = (1 \pm \varepsilon) x^{\mathcal{T}} L_H x$

Example: expander graph is sparsification of complete graph

- \triangleright $O(n/\varepsilon^2)$ edges suffice for H, we can find H in time $\tilde{O}(m)$
- \blacktriangleright Many applications, incl. approximate min cut and max cut, Laplacian systems.

Gödel Prize 2015 for Spielman and Teng

Faster quantum algorithm for sparsification

- **Apers-dW'20: quantum algorithm to find** ε **-spectral** ϵ parsifier H in sublinear time $\tilde{O}(\sqrt{2})$ (mn/ε) (this is optimal!)
- ▶ Similar speed-up for cut problems, Laplacian systems etc.
- ▶ Koutis-Xu'16 iterative sparsifier: each iteration identifies $\tilde{O}(n)$ important edges (by finding a few "spanners") and randomly removes half of the other edges; log iterations suffice
- ▶ Quantum speed-up using two tools: find spanners in time $\tilde{O}(\sqrt{mn})$ instead of classical $\tilde{O}(m)$, and find the final set of $\tilde{O}(n/\varepsilon^2)$ edges of H using Grover

Quantum speed-up for NP-hard optimization problems

Polynomial speed-ups are possible:

- ▶ Find a satisfying assignment to a formula ϕ on *n* Boolean variables x_1,\ldots,x_n in $\sim \sqrt{2^n}$ steps using Grover
- ▶ If ϕ is a 3-SAT formula, then plain Grover is slower than classical Schöning algorithm, which takes time $\sim (4/3)^n$. Quadratic speed-up of Schöning via amplitude amplification

Two other methods for quantum speed-up:

- \triangleright Montanaro'15: quadratic speed-up for backtracking
- ▶ ABIKPV'18: polynomial speed-ups for dynamic programming, incl. speeding up Held-Karp algorithm for TSP from 2^n to 1.7^n

We don't expect exponential quantum speed-up. Viewing SAT as unstructured search, quadratic speed-up is optimal (BBBV'93); we don't know how to use the structure. . .

Continuous optimization

Quantum speed-ups for continuous optimization

- 2. Compute the gradient $\nabla f = (\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n})$ at point $x^{(t)}$
- 3. Move down for some stepsize $\eta: x^{(t+1)} \leftarrow x^{(t)} \eta \cdot \nabla f(x^{(t)})$
- 4. Set $t \leftarrow t + 1$, goto 2

QCs can sometimes compute the gradient more efficiently

▶ Variational methods: use classical methods to optimize over some parametrized quantum circuits (heuristic)

Linear and semidefinite programs

- Einear program, with variable $x \in \mathbb{R}^n$: max $c^T x$ s.t. $a_j^T x \leq b_j$, $j = 1, \ldots, m$ $x > 0$
- ▶ Important tool in optimization since 1940s (simplex method), polynomial-time solvable by ellipsoid method (Khachiyan'79)
- Semidefinite program, with variable $X \in \mathbb{R}^{n \times n}$:
	- max $Tr(CX)$ s.t. $Tr(A_iX) \leq b_i$ $X \succeq 0$ $Tr(X) \leq R$ \Leftrightarrow s.t. $\sum_{j=1}^{m} A_j y_j + ly_0 \succeq C$ min b^Ty+Ry_0 $y > 0$
- ▶ Can be stronger than LP, e.g. for approximating maximal cut in graph (GW'94). OPT still efficiently approximable to $\pm \varepsilon$

The Arora-Kale SDP-solver & its quantization

- \blacktriangleright For not-too-small ε , best classical solver is matrix multiplicative weights method (Arora-Kale'05)
- ▶ This iterative algorithm bounces back-and-forth between primal solutions $X^{(t)}$ (psd matrices with bounded trace) and solutions $y^{(t)}$ of a relaxation of the dual
- \blacktriangleright Converges to ε -optimal $X^{(\mathcal{T})}$ for $\mathcal{T} = O(\log(n)/\varepsilon^2)$ iterations
- ▶ Brandão-Svore'16: treat $X^{(t)}$ as log(*n*)-qubit quantum state; prepare it as a "Gibbs state", use it to approximate $\text{Tr}(X^{(t)}A_j)$

Use Grover to solve relaxed dual more efficiently

- ▶ This was improved by [vAGGdW'17], [BKLLWS'17] vApeldoorn-Gilyén'18: s-sparse SDPs in $\tilde{O}((\sqrt{m}/\varepsilon^4 + \sqrt{n}/\varepsilon^5)s)$
- \blacktriangleright For small ε , interior-point methods are best, at least in theory. Recent quantum speed-ups for this as well.

Regularized linear regression

▶ Find θ to minimize least squares loss $L(\theta) = \sum_{n=1}^{N}$ $i=1$ $(x_i^T\theta - y_i)^2$. Closed-form solution for the minimizer: $\theta^* = (X^T X)^+ X^T y$

 \triangleright Problems: this tends to overfit and yield very dense θ -vectors

 \blacktriangleright Lasso adds " ℓ_1 -regularizer": min $L(\theta)$ subject to $\sum |\theta_j| \leq 1$ d $j=1$

Quantum algorithm for Lasso

l Lasso: minimize
$$
L(\theta)
$$
 subject to $\sum_{j=1}^{d} |\theta_j| \le 1$

 \triangleright Finding the exact minimizer is a hard problem, so we typically try to find a vector θ whose loss is not much worse:

$$
L(\theta) \le L_{\min} + \varepsilon \quad \text{and} \quad \sum_{j=1}^d |\theta_j| \le 1
$$

▶ Best known classical algorithm runs in time $\tilde{O}(d/\varepsilon^2)$

- ▶ Chen & dW'21: gave a quantum algorithm that runs in time Chen & diversing a quantum algorithm that runs in $\tilde{O}(\sqrt{d}/\varepsilon^2)$, by speeding up the Frank-Wolfe algorithm. In each iteration, FW selects largest entry of gradient $\nabla L(\theta)$ to determine where to move. We can quantumly speed up approximation of gradient-entries as well as maximum-finding
- ► We also proved $\sqrt{d}/\varepsilon^{1.5}$ lower bound for all quantum algorithms; the correct ε -dependence is still unknown!

Finding the principal eigenvectors of a matrix

- \triangleright Given $d \times d$ matrix A. Its most important property is the largest eigenvalue λ_1 with associated "top eigenvector" v_1
- \triangleright Efficiently computing v_1 is important in many applications: Google's Pagerank, Principal Component Analysis, all sorts of optimization algorithms. . .
- ▶ Can compute v_1 by diagonalizing A; this costs time $O(d^{2.37...})$ in theory and $O(d^3)$ in practice. It also does too much...

▶ Power method is more efficient:

- 1. Choose random unit vector $w = \sum_{i=1}^{d} a_i v_i$, $|a_i| \approx 1/2$ √ d
- 2. Compute $A^k w = \sum_i a_i \lambda_i^k v_i$.

If λ_1 is bigger than the other eigenvalues, then $A^k w$ will converge quickly to a vector proportional to v_1

 \triangleright So we can find v_1 with a few matrix-vector multiplications

Faster power method by faster matrix-vector multiplication

- \blacktriangleright In general, computing Aw on a quantum computer takes time $\sim d^2$ if you want to do it exactly. But power method still works if the matrix-vector products are computed with small and benign errors! (Moritz & Hardt'14)
- ▶ But even approximating Aw takes $\sim d^2$ steps classically
- ► Chen, Gilyén, dW'24 approximate Aw in time $\sim d^{1.5}$: approximately prepare Aw as a $log(d)$ -qubit quantum state, and then repeatedly measures copies of that state to estimate its vector $Aw/$ $\parallel Aw \parallel$ of amplitudes
- \blacktriangleright This speeds up the power method to time roughly $d^{1.5}$ in the case of a constant eigenvalue gap $\lambda_1 - \lambda_2$
- ▶ PCA: approximate top-q eigenvectors in time $qd^{1.5}$

Summary

Faster optimization is one of the main potential applications of quantum computers to real-world problems, though probably not for the near term: quantum time C √ \overline{n} beats classical time n only for very large n ; QRAM issue: can we build quantum-accessible classical memory?

We have many quantum speed-ups, usually polynomial:

- \triangleright Discrete: minimizing/maximizing over a finite set, faster shortest paths, graph sparsification, ...
- \triangleright Continuous: gradient descent, linear/semidefinite programs, linear regression, principal component analysis, . . .

Also many interesting open problems ...