
1/ 20

Quantum Algorithms
for Optimization

Ronald de Wolf

2/ 20

Optimization

General problem: min
x∈K

f (x)

▶ Finding the shortest route on a given map

▶ Designing a more energy-efficient chip

▶ Training your neural network to detect cats

3/ 20

Discrete and continuous settings for optimization

Discrete optimization: variables are discrete (bits, integers)

▶ Shortest path algorithms

▶ Matching algorithms

▶ Max flow / Min cut in a network

▶ Often discrete optimization problems are NP-hard:
Constraint-satisfaction, TSP, integer linear programs . . .

Continuous optimization: variables are continuous (reals)

▶ Gradient descent

▶ Linear programs, semidefinite programs

▶ Non-convex optimization

Or a mix of these:

▶ LP/SDP-relaxation of discrete problems (max-cut in a graph)

▶ Graph sparsification to solve Laplacian linear system Lx = b

4/ 20

How can quantum computers help?

▶ Faster optimization is one of the main potential application
areas of quantum computers (along with crypto & simulation)

▶ Several new quantum algorithms discovered in last 5-10 years

▶ Goal of this talk: survey what we know

▶ I’ll focus on what I’m most familiar with: provable speed-ups.

Not on heuristics: adiabatic algorithm, annealing, variational
algorithms like QAOA (Farhi-Goldstone-Gutmann’14):

Low-depth quantum circuit parametrized by few parameters.
Run it, measure the output, adjust parameters to improve.
Hope to do something useful

5/ 20

Two big caveats for the provable speed-ups

1. Most optimization speed-ups ≤ quadratic. Is this any good?

Compare quantum cost C
√
n vs classical cost n:

quantum beats classical for instance size n > C 2.

If C ∼ 1010, then need huge n > 1020 before get speed-up

2. If we are given classical data (eg, input graph, or constraint
matrix) we should be able to access this in superposition.

Classical n-bit RAM is a piece of hardware
of size ∼ n that can be accessed in ∼ log n steps ︸ ︷︷ ︸

n leavesQuantum RAM should be the same, accessible
in superposition, |i , 0⟩ 7→ |i , xi ⟩
Hard to implement with noise

Does this mean these quantum optimization algorithms are useless?
No, but they’re probably not for the near term

6/ 20

Discrete optimization

7/ 20

Quantum speed-up for discrete optimization

▶ These typically use Grover’s quantum search
as a blackbox within larger, often re-designed
classical algorithm. Grover finds a solution in
a size-n search space in time O(

√
n)

▶ Find the minimum of f : {1, . . . , n} → R
in O(

√
n) f -evaluations and other operations (Dürr-Høyer’96)

▶ Finding shortest path in an n-vertex graph

classical complexity of O(n2) (Dijkstra’56)
vs quantum complexity O(n1.5) (DHHM’04)

▶ Polynomial speed-ups for matching, other graph problems

8/ 20

Sparsification: less is more!

9/ 20

Graph sparsification

▶ Graph G = (V ,E ,w) with n = |V | vertices, m = |E | edges,
weight function w : E → R≥0. Given as adjacency list

▶ Goal: sparsify (ie reduce m) while preserving many properties

▶ Laplacian LG =
∑
e∈E

w(e)Le ; L(i ,j) = (ei − ej)(ei − ej)
T

▶ An ε-spectral sparsifier of G is graph H = (V ,E ′ ⊆ E ,w ′) s.t.

for all x ∈ Rn : xTLGx = (1± ε)xTLHx

Example: expander graph is sparsification of complete graph

▶ O(n/ε2) edges suffice for H, we can find H in time Õ(m)

▶ Many applications, incl. approximate
min cut and max cut, Laplacian systems.

Gödel Prize 2015 for Spielman and Teng

10/ 20

Faster quantum algorithm for sparsification

▶ Apers-dW’20: quantum algorithm to find ε-spectral
sparsifier H in sublinear time Õ(

√
mn/ε) (this is optimal!)

▶ Similar speed-up for cut problems, Laplacian systems etc.

▶ Koutis-Xu’16 iterative sparsifier: each iteration identifies Õ(n)
important edges (by finding a few “spanners”) and randomly
removes half of the other edges; log iterations suffice

▶ Quantum speed-up using two tools:

find spanners in time Õ(
√
mn) instead of classical Õ(m),

and find the final set of Õ(n/ε2) edges of H using Grover

11/ 20

Quantum speed-up for NP-hard optimization problems

Polynomial speed-ups are possible:

▶ Find a satisfying assignment to a formula ϕ on n Boolean
variables x1, . . . , xn in ∼

√
2n steps using Grover

▶ If ϕ is a 3-SAT formula, then plain Grover is slower than
classical Schöning algorithm, which takes time ∼ (4/3)n.
Quadratic speed-up of Schöning via amplitude amplification

Two other methods for quantum speed-up:

▶ Montanaro’15: quadratic speed-up for backtracking

▶ ABIKPV’18: polynomial speed-ups for dynamic programming,
incl. speeding up Held-Karp algorithm for TSP from 2n to 1.7n

We don’t expect exponential quantum speed-up. Viewing SAT as
unstructured search, quadratic speed-up is optimal (BBBV’93);
we don’t know how to use the structure. . .

12/ 20

Continuous optimization

13/ 20

Quantum speed-ups for continuous optimization

▶ Gradient descent: iterative method
to find local minimum of f : Rn → R
1. Start with t = 0, and some initial point x (0)

2. Compute the gradient ∇f = (∂f
∂x1

, . . . , ∂f
∂xn

) at point x (t)

3. Move down for some stepsize η: x (t+1) ← x (t) − η · ∇f (x (t))
4. Set t ← t + 1, goto 2

QCs can sometimes compute the gradient more efficiently

▶ Variational methods:
use classical methods
to optimize over some
parametrized quantum
circuits (heuristic)

https://dkopczyk.quantee.co.uk/wp-content/uploads/2019/05/vc4.png

14/ 20

Linear and semidefinite programs

▶ Linear program, with variable x ∈ Rn:

max cT x
s.t. aTj x ≤ bj , j = 1, . . . ,m

x ≥ 0

▶ Important tool in optimization since 1940s (simplex method),
polynomial-time solvable by ellipsoid method (Khachiyan’79)

▶ Semidefinite program, with variable X ∈ Rn×n:

max Tr(CX)

s.t. Tr(AjX) ≤ bj

X ⪰ 0

Tr(X) ≤ R

⇔

min bT y+Ry0

s.t.
∑m

j=1
Ajyj+Iy0 ⪰ C

y ≥ 0

▶ Can be stronger than LP, e.g. for approximating maximal cut
in graph (GW’94). OPT still efficiently approximable to ±ε

15/ 20

The Arora-Kale SDP-solver & its quantization

▶ For not-too-small ε, best classical solver is
matrix multiplicative weights method (Arora-Kale’05)

▶ This iterative algorithm bounces back-and-forth between
primal solutions X (t) (psd matrices with bounded trace)
and solutions y (t) of a relaxation of the dual

▶ Converges to ε-optimal X (T) for T = O(log(n)/ε2) iterations

▶ Brandão-Svore’16: treat X (t) as log(n)-qubit quantum state;
prepare it as a “Gibbs state”, use it to approximate Tr(X (t)Aj)

Use Grover to solve relaxed dual more efficiently

▶ This was improved by [vAGGdW’17], [BKLLWS’17]
vApeldoorn-Gilyén’18: s-sparse SDPs in Õ((

√
m/ε4 +

√
n/ε5)s)

▶ For small ε, interior-point methods are best, at least in theory.
Recent quantum speed-ups for this as well.

16/ 20

Regularized linear regression

▶ Given N points
(x1, y1), . . . , (xN , yN)
with xi ∈ Rd , yi ∈ R,
fit line through them:
find coefficient-vector θ ∈ Rd

s.t. linear function xTi θ is a
good predictor of y -variable

▶ Find θ to minimize least squares loss L(θ) =
N∑
i=1

(xTi θ − yi)
2.

Closed-form solution for the minimizer: θ∗ = (XTX)+XT y

▶ Problems: this tends to overfit and yield very dense θ-vectors

▶ Lasso adds “ℓ1-regularizer”: min L(θ) subject to
d∑

j=1

|θj | ≤ 1

17/ 20

Quantum algorithm for Lasso

▶ Lasso: minimize L(θ) subject to
d∑

j=1

|θj | ≤ 1

▶ Finding the exact minimizer is a hard problem, so we typically
try to find a vector θ whose loss is not much worse:

L(θ) ≤ Lmin + ε and
d∑

j=1

|θj | ≤ 1

▶ Best known classical algorithm runs in time Õ(d/ε2)

▶ Chen & dW’21: gave a quantum algorithm that runs in time

Õ
(√

d/ε2
)
, by speeding up the Frank-Wolfe algorithm.

In each iteration, FW selects largest entry of gradient ∇L(θ)
to determine where to move. We can quantumly speed up
approximation of gradient-entries as well as maximum-finding

▶ We also proved
√
d/ε1.5 lower bound for all quantum

algorithms; the correct ε-dependence is still unknown!

18/ 20

Finding the principal eigenvectors of a matrix

▶ Given d × d matrix A. Its most important property is the
largest eigenvalue λ1 with associated “top eigenvector” v1

▶ Efficiently computing v1 is important in many applications:
Google’s Pagerank, Principal Component Analysis,
all sorts of optimization algorithms. . .

▶ Can compute v1 by diagonalizing A; this costs time O(d2.37...)
in theory and O(d3) in practice. It also does too much. . .

▶ Power method is more efficient:

1. Choose random unit vector w =
∑d

i=1 aivi , |ai | ≈ 1/
√
d

2. Compute Akw =
∑

i aiλ
k
i vi .

If λ1 is bigger than the other eigenvalues, then Akw will
converge quickly to a vector proportional to v1

▶ So we can find v1 with a few matrix-vector multiplications

19/ 20

Faster power method by faster matrix-vector multiplication

▶ In general, computing Aw on a quantum computer takes time
∼ d2 if you want to do it exactly. But power method still
works if the matrix-vector products are computed with small
and benign errors! (Moritz & Hardt’14)

▶ But even approximating Aw takes ∼ d2 steps classically

▶ Chen, Gilyén, dW’24 approximate Aw in time ∼ d1.5:
approximately prepare Aw as a log(d)-qubit quantum state,
and then repeatedly measures copies of that state to estimate
its vector Aw/ ∥Aw ∥ of amplitudes

▶ This speeds up the power method to time roughly d1.5

in the case of a constant eigenvalue gap λ1 − λ2

▶ PCA: approximate top-q eigenvectors in time qd1.5

20/ 20

Summary

Faster optimization is one of the main potential applications
of quantum computers to real-world problems,
though probably not for the near term:

quantum time C
√
n beats classical time n only for very large n;

QRAM issue: can we build quantum-accessible classical memory?

We have many quantum speed-ups, usually polynomial:

▶ Discrete: minimizing/maximizing over a finite set,
faster shortest paths, graph sparsification, . . .

▶ Continuous: gradient descent, linear/semidefinite programs,
linear regression, principal component analysis, . . .

Also many interesting open problems . . .

