Quantum Algorithms
for Optimization

Ronald de Wolf

uSoft

UNIVERSITEIT VAN AMSTERDAM

A CWL_

Optimization

General problem: min f(x)
xeK

» Finding the shortest route on a given map

> Designing a more energy-efficient chip

> Training your neural network to detect cats

Discrete and continuous settings for optimization

Discrete optimization: variables are discrete (bits, integers)

» Shortest path algorithms

» Matching algorithms

» Max flow / Min cut in a network

» Often discrete optimization problems are NP-hard:

Constraint-satisfaction, TSP, integer linear programs . ..

Continuous optimization: variables are continuous (reals)

» Gradient descent

» Linear programs, semidefinite programs

» Non-convex optimization

Or a mix of these: @ D

» LP/SDP-relaxation of discrete problems (max-cut in a graph)

» Graph sparsification to solve Laplacian linear system Lx = b

How can quantum computers help?

» Faster optimization is one of the main potential application
areas of quantum computers (along with crypto & simulation)

» Several new quantum algorithms discovered in last 5-10 years
» Goal of this talk: survey what we know

» I'll focus on what I'm most familiar with: provable speed-ups.

Not on heuristics: adiabatic algorithm, annealing, variational
algorithms like QAOA (Farhi-Goldstone-Gutmann'14):
Low-depth quantum circuit parametrized by few parameters.
Run it, measure the output, adjust parameters to improve.
Hope to do something useful

Two big caveats for the provable speed-ups

1. Most optimization speed-ups < quadratic. Is this any good?

Compare quantum cost C+/n vs classical cost n:
quantum beats classical for instance size n > C2.

If C ~ 10, then need huge n > 10%° before get speed-up

2. If we are given classical data (eg, input graph, or constraint
matrix) we should be able to access this in superposition.

Classical n-bit RAM is a piece of hardware
of size ~ n that can be accessed in ~ log n steps

Quantum RAM should be the same, accessible n leaves
in superposition, |i,0) — |/, x;)
Hard to implement with noise

Does this mean these quantum optimization algorithms are useless?
No, but they're probably not for the near term

Discrete optimization

Quantum speed-up for discrete optimization

» These typically use Grover's quantum search
as a blackbox within larger, often re-designed
classical algorithm. Grover finds a solution in
a size-n search space in time O(+/n)

» Find the minimum of £ : {1,... n} - R
in O(y/n) f-evaluations and other operations (Diirr-Hgyer'96)

» Finding shortest path in an n-vertex graph - : 5
classical complexity of O(n?) (Dijkstra'56)
vs quantum complexity O(n'®) (DHHM'04) .

» Polynomial speed-ups for matching, other graph problems

Sparsification: less is more!

\ IS

7NN

v@"!‘\v'ﬁ
N \A

'/\§“,~ -

=

7 N —
VNN [

Graph sparsification

» Graph G = (V, E,w) with n = |V/| vertices, m = |E| edges,
weight function w : E — R>¢. Given as adjacency list
» Goal: sparsify (ie reduce m) while preserving many properties
» Laplacian Lg = Z w(e)le; Liijy = (e —¢)(ei — ej)T
ecE
» An e-spectral sparsifier of G is graph H = (V,E' C E,w') s.t

forall x e R": x"Lgx = (1+ z—:)xTLHx
Example: expander graph is sparsification of complete graph

> O(n/<?) edges suffice for H, we can find H in time O(m)

> Many applications, incl. approximate
min cut and max cut, Laplacian systems.

Godel Prize 2015 for Spielman and Teng

Faster quantum algorithm for sparsification

> Apers-dW'20: quantum aIgoritth to find e-spectral
sparsifier H in sublinear time O(y/mn/e) (this is optimall)

» Similar speed-up for cut problems, Laplacian systems etc.

> Koutis-Xu'16 iterative sparsifier: each iteration identifies O(n)
important edges (by finding a few “spanners”) and randomly
removes half of the other edges; log iterations suffice

» Quantum speed-up using two tools:

find spanners in time O(NN/mn) instead of classical O(m),
and find the final set of O(n/e?) edges of H using Grover

an ‘%"/? g ‘%ﬂn/e%

t t |

adjacency list adj. list + k-ind. oracle Grover search

Quantum speed-up for NP-hard optimization problems

Polynomial speed-ups are possible:
» Find a satisfying assignment to a formula ¢ on n Boolean
variables xi,..., X, in ~ /2" steps using Grover

» If ¢ is a 3-SAT formula, then plain Grover is slower than
classical Schoning algorithm, which takes time ~ (4/3)".
Quadratic speed-up of Schoning via amplitude amplification

Two other methods for quantum speed-up:

> Montanaro'lh: quadratic speed-up for backtracking

> ABIKPV'18: polynomial speed-ups for dynamic programming,
incl. speeding up Held-Karp algorithm for TSP from 27 to 1.7"

We don't expect exponential quantum speed-up. Viewing SAT as
unstructured search, quadratic speed-up is optimal (BBBV'93);
we don’t know how to use the structure. ..

Continuous optimization

Quantum speed-ups for continuous optimization

Initial

weight \ /

Jw) Gradient

» Gradient descent: iterative method
to find local minimum of f : R” — R —
Jra(W)

1. Start with t = 0, and some initial point x(0)
2. Compute the gradient V£ = (2L, ..., 2£) at point x(*)

xi?) Oxg
3. Move down for some stepsize n: x(t+1) « x(t) — . Vf(x(*)
4, Sett+ t+1, goto 2

QCs can sometimes compute the gradient more efficiently

» Variational methods: Quantum part Classical part

Q2
'

use classical methods : Quantum circuit :
to optimize over some L
parametrized quantum
circuits (heuristic)

https://dkopczyk.quantee.co.uk/wp-content/uploads/2019/05/vc4.png Objective

Linear and semidefinite programs

P Linear program, with variable x € R":
T

max c’x
st. alx<b;, j=1,...,m
x>0

» Important tool in optimization since 1940s (simplex method),
polynomial-time solvable by ellipsoid method (Khachiyan'79)

» Semidefinite program, with variable X € R"™":

- T

max Tr(CX) min b y:Ryo

st. Tr(AiX) < b; o st ijl Ajyi+lyo = C
X=0 y>0
THX) <R

» Can be stronger than LP, e.g. for approximating maximal cut
in graph (GW'94). OPT still efficiently approximable to +e

The Arora-Kale SDP-solver & its quantization

| 2

For not-too-small €, best classical solver is
matrix multiplicative weights method (Arora-Kale'05)

This iterative algorithm bounces back-and-forth between
primal solutions X(t) (psd matrices with bounded trace)
and solutions y(t) of a relaxation of the dual

> Converges to e-optimal X(7) for T = O(log(n)/<?) iterations

» Brandio-Svore'16: treat X(t) as log(n)-qubit quantum state;

prepare it as a “Gibbs state”, use it to approximate Tr(X(t)Aj)
Use Grover to solve relaxed dual more efficiently

This was improved by [VAGGAW'17], [BKLLWS'17]
vApeldoorn-Gilyén'18: s-sparse SDPs in O((y/m/e* 4+ \/n/e%)s)

For small €, interior-point methods are best, at least in theory.
Recent quantum speed-ups for this as well.

Regularized linear regression

Linear Fit Function

» Given N points 140
(X17YI)7---;(XNaYN) 120
with x; € R9,y; € R,
fit line through them:
find coefficient-vector § € RY =
s.t. linear function x,-TG is a 84
good predictor of y-variable

Wealght
8

50 55 B0 B5 70
Helight

» Find 0 to minimize least squares loss L(6 Z(XTH vi)?

Closed-form solution for the minimizer: §* = (XTX)+XT

> Problems: this tends to overfit and yield very dense 6-vectors

d
» Lasso adds “/1-regularizer”: min L(6) subject to Z 16;] <1
j=1

Quantum algorithm for Lasso

>

>

d
Lasso: minimize L(6) subject to Z 16;] <1
j=1
Finding the exact minimizer is a hard problem, so we typically
try to find a vector 6 whose loss is not dmuch worse:

L(O) < Lmin+e and > |6;| <1
j=1

> Best known classical algorithm runs in time O(d/&?)

» Chen & dW'21: gave a quantum algorithm that runs in time

0 (\/3/52> by speeding up the Frank-Wolfe algorithm.

In each iteration, FW selects largest entry of gradient VL(0)
to determine where to move. We can quantumly speed up
approximation of gradient-entries as well as maximum-finding

We also proved \/3/51‘5 lower bound for all quantum
algorithms; the correct e-dependence is still unknown!

Finding the principal eigenvectors of a matrix

» Given d x d matrix A. lts most important property is the
largest eigenvalue A1 with associated “top eigenvector” v;
» Efficiently computing vy is important in many applications:
Google's Pagerank, Principal Component Analysis,
all sorts of optimization algorithms. ..
» Can compute v; by diagonalizing A; this costs time O(d?37)
in theory and O(d®) in practice. It also does too much. ..
» Power method is more efficient:
1. Choose random unit vector w = 27:1 ajv;, |a;| = 1/Vd
2. Compute Akw = F a,-/\,’-‘v,-.
If A1 is bigger than the other eigenvalues, then AXw will
converge quickly to a vector proportional to vi

» So we can find v; with a few matrix-vector multiplications

Faster power method by faster matrix-vector multiplication

>

In general, computing Aw on a quantum computer takes time
~ d? if you want to do it exactly. But power method still
works if the matrix-vector products are computed with small
and benign errors! (Moritz & Hardt'14)

But even approximating Aw takes ~ d? steps classically

Chen, Gilyén, dW’24 approximate Aw in time ~ dto:
approximately prepare Aw as a log(d)-qubit quantum state,
and then repeatedly measures copies of that state to estimate
its vector Aw/ || Aw || of amplitudes

This speeds up the power method to time roughly d'-
in the case of a constant eigenvalue gap A1 — A2

PCA: approximate top-q eigenvectors in time gd*®

Summary

Faster optimization is one of the main potential applications
of quantum computers to real-world problems,
though probably not for the near term:

quantum time C./n beats classical time n only for very large n;
QRAM issue: can we build quantum-accessible classical memory?

We have many quantum speed-ups, usually polynomial:

» Discrete: minimizing/maximizing over a finite set,
faster shortest paths, graph sparsification, ...

» Continuous: gradient descent, linear/semidefinite programs,
linear regression, principal component analysis, ...

Also many interesting open problems ...

