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Quantum State Identity

𝑦! 𝑦" |𝜓!⟩ |𝜓"⟩
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Optimal test under perfect completeness requirement [Kobayashi, Matsumoto, Yamakami ’01]

The SWAP test

Input Pr[measure|0⟩]
|𝜓⟩|𝜓⟩ 1
|𝜓⟩|𝜓!⟩ or |𝜓!⟩|𝜓⟩ 1/2

[Barenco, Berthiaume, Deutsch, Ekert, Jozsa, Macchiavello ’97]
[Buhrman, Cleve, Watrous, de Wolf ’01] 
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The SWAP test

How about 𝑛 input states?

0 𝜓! 𝜓" → !
"
( 0 𝜓! 𝜓" + 1 𝜓! |𝜓"⟩) →

!
"
( 0 𝜓! 𝜓" + 1 𝜓" |𝜓!⟩)

After the final Hadamard we get:
!
"
(|0⟩( 𝜓! 𝜓" + 𝜓" 𝜓! )+|1⟩( 𝜓! 𝜓" - 𝜓" 𝜓! )

If the states 𝜓" , 𝜓# are equal we always measure 0
Let 0 outcome correspond to answering `=‘, wrong on the non equal inputs if we measure 0



5

Types of errors
Type I / false positive / soundness error Type II / false negative / completeness error

Average success probability = 𝑝$Pr success in I + 𝑝$$Pr success in II

We want to maximize this success probability

Positive case = all 𝑛 states are identitical

Perfect completeness means we are always correct on the positive case
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Input: 𝑛 unknown states |𝜓"⟩, |𝜓#⟩, … , |𝜓%⟩ each of local dimension 𝑑, pairwise orthogonal or identical

Promise: We have that either
i. All 𝜓& are identical
ii. We have one of the promises for each of the following problems:

𝐐𝐒𝐈𝐧
𝐩: there exists an 𝑖, 𝑗 ∈ [𝑛] such that |𝜓&⟩, |𝜓)⟩, are pairwise orthogonal

B𝐐𝐒𝐈𝝁
𝒑 : One is given some 𝜇 ⊢ 𝑛 with 𝜇# > 0 such that |𝜓,(")⟩|𝜓,(#)⟩ … |𝜓,(%)⟩ = 𝑈⊗%|10!20" …𝑑0#⟩

for unknown 𝑈 and unknown permutation 𝜎

𝐐𝐒𝐈0
𝐩: One is given some 𝜇 ⊢ 𝑛 with 𝜇# > 0 such that |𝜓"⟩|𝜓#⟩ … |𝜓%⟩ = 𝑈⊗%|10!20" …𝑑0#⟩ for 

unknown 𝑑-dimensional unitary 𝑈

In all problems, case (i) happens with probability 𝑝.

Output: Return “equal” in case (i) and “unequal” in case (ii)

Quantum State Identity
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[Kada, Nishimura, Yamakami ’08]

𝐶: |𝜎⟩|𝜓"⟩|𝜓#⟩ … |𝜓%⟩ ↦ |𝜎⟩|𝜓,$!(")⟩|𝜓,$!(#)⟩ … |𝜓,$!(%)⟩

• Optimal for arbitrary 𝑛 under the perfect completeness 
requirement [KNY08]

• Uses QFT on 𝑛 log 𝑛 qubits

• So far optimality was unknown if we relax the perfect 
completeness requirement

The Permutation Test
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Circle test [KNY08]: only cyclic shifts

Reducing circuit complexity

• Optimal for prime 𝑛 under perfect 
completeness requirement 

• Achieves 𝑂 ⁄1 𝑛 error for arbitrary 𝑛

• Uses QFT on log𝑛 qubits

[CDMKJ18]:Iterated SWAP test

• Optimal for arbitrary 𝑛 when only 
the first state can be different

• 𝑂(𝑛) SWAP tests, no QFT
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Circle test [KNY08]: only cyclic shifts

Reducing circuit complexity

• Behaves bad if the input is alternating 
orthogonal (|01010101⟩), because we create 
less possible permutations

• Relatively good when inputs are bunched 
(|00001111⟩)

• Intuitively we want to maximize the number 
of permutations
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1) What if one relaxes the perfect completeness requirement? [KNY08]

2) Can one find even simpler approximations based solely on SWAP-tests? [KNY08]

3) What is the underlying mathematical structure that allows one to achieve (near-)optimal 
performance with simpler tests?

4) What about about performance beyond the worst-case inputs?

Some questions
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• There exists an optimal test for QSI for all priors and types of allowed errors: for all 
’’sensible’’ priors, this is in fact the permutation test.

• Key structure is input symmetry, exploit using group theory and representation theory

The punchline
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Permutation groups

Permutation group is a subgroup of the symmetric group S%

Group elements: permutations of the set {1,2, …𝑛}
Operation: composition of permutations

• 𝑆% has all 𝑛! possible permutations

• Cyclic group 𝐶% ⊂ 𝑆%, contains 𝑛 permutations

Representation theory: represent algebraic objects (such as groups) as linear operators with 
matrix multiplication preserving the original algebraic operations
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The optimal test

Indeed, we recover the SWAP test (p = "
#
, 𝑛 = 2, ℎ = 1):

𝑃1233 2,1 =
1
2
+
1
2
1 −

1
#
"

=
3
4

Theorem. For all 𝑝 ≥ 𝑝∗ and for any 𝜇 ⊢ 𝑛 the permutation test is optimal for all quantum state 
identity problems, achieves perfect completeness and has soundness

1 − "
%
&
,

where %
0 ≔ %!

0!!…0%!
is a multinomial coefficient and 𝑝∗ ≔ "

"# #
$

For all 𝑝 < 𝑝∗, the optimal test is to always output “unequal”.
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Some conclusions from the Theorem

• Knowing the order does not allow one to achieve a higher success probability

• Relaxing the one-sided error requirement does not increase the average success probability

• The permutation test will perform much better on most inputs than the worst-case instances 
(those where only one state is different) that have ⁄1 𝑛 soundness error

• The number of states that are different makes a big difference in the ability to distinguish 
between both cases
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A 1-page sketch of the proof

Assume that we twirl with respect to the Haar measure.

Write the problem of finding the optimal measurement as an SDP (P).

The permutation test is a feasible solution to (P) with an objective value 𝑓.

We make an educated guess for the solution in the dual SDP (D), show that it is feasible with 
objective value 𝑓∗ (relies on representation theory and Weingarten calculus).

𝑓∗ = 𝑓, so weak duality implies that the permutation test is optimal for Haar random.

Show that the Haar measure is, in fact, the hardest measure over all inputs
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Sketch of the proof for 𝑝 = "
#

Primal program (P)

max "
$
Tr Π%𝜌%& + "

$
Tr[Π'𝜌'&]

s.t. Π% + Π' = 𝕀(#
Π%, Π' ≽ 0

Dual program (D)

min Tr 𝑌

s.t. 𝑌 − "
$
𝜌%& ≽ 0

𝑌 − "
$
𝜌'& ≽ 0

𝑌 ∈ Herm (ℂ()⊗&

𝜌*
+ ≔ ∫𝑈⊗-|1-⟩⟨1-|(𝑈.)⊗-𝑑𝑈, 𝜌/

+ ≔ ∫𝑈⊗-|1+!2+" …𝑑+#⟩⟨1+!2+" …𝑑+#|(𝑈.)⊗-𝑑𝑈

𝑑𝑈 can come from any measure on the unitary group 

optimal value

Primal feasible 
solutions

Dual feasible 
solutions



17

Sketch of the proof (iii)

Key lemma: One can write 𝜌/- when using the Haar measure in terms of multinomial 
coefficients, Kostka numbers and isotypic projectors onto irreps in the tensor 
representation of the symmetric group

For the symmetric group, all of the above can easily be computed!

This is not the case for any group G
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General Statement: the 𝐺-test

Arbitrary subgroup 𝐺 ⊆ 𝑆%

𝐺-test measurement Π7 = Π8 and Π9 = 𝕀 − Π8, where Π8
is the projector onto the trivial irrep of 𝐺

Theorem. The 𝐺-test has perfect completeness and soundness
1 − "

%
&

∑
:⊢#%

𝐾:,0𝑟:
8

where
𝑟:
8 =  multiplicity of the trivial irrep of the subgroup 𝐺 ⊆ 𝑆%

inside the irrep 𝜆 of the symmetric group 𝑆%.
𝐾:,0 = Kostka number 
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Examples

𝐺 = 𝑆&— the permutation test✔

𝐺 = 𝐶&— the	cycle test✔

While the following are not known

For 𝑛 = 2* :	𝐺 = 𝐶$ ≀ ⋯ ≀ 𝐶$
⏟
*

— the	iterated	SWAP	tree	test
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The Iterated SWAP Tree

• Uses 𝑛 − 1 SWAP tests

• Only need one ST to measure orthogonal

• Perfect completeness and soundness lower 
bounded by some recurrence relation which 
is 1 − 1/𝑛 on the hardest input for the 
permutation test (only one state different)

• ”Hardware-friendly” when using optics-
based qc? [CDM+18]

(Partly) resolves an open question by [KNY08]

How to analyze performance on certain inputs?
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Conclusion

• When you know little about your input and have the resources use the Permutation test!

• If you have fewer resources, use restricted 𝐺-tests such as the Circle or Iterated Swap Tree

• If you have few resources and know more about the input distribution analyze what works 
best for the case
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Open problems

What about an approximate version of QSI?

Can we analyze 𝐺-tests for a specific 𝐺 ⊂ 𝑆&?

Can we find an exact expression for the performance of the Iterated SWAP Tree?

Can we use similar techniques to solve the problem of reconstructing 𝜇
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Thank you for listening!
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The Iterated SWAP Tree

How to analyze performance on certain inputs?

• Can compute the relevant quantities from the 
𝐺-test to get analytical expression

• No direct method to compute these 
quantities however

• We propose a different way to compute its 
performance based on bounding the number 
of `clicks’ when the inputs are orthogonal
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Recursive Upper Bound
Theorem. The soundness probability of the IST for 𝑛 = 2=
and ℎ ∈ [𝑛], with the promise that 𝜇 = (𝑛 − ℎ, ℎ) is

𝑃1$>? 𝑛, ℎ ≥ 1 −
𝛾(ℎ, log#(𝑛))

%
@

,

where 𝛾 ℎ,𝑚 = ∑A7B
'
" 𝛾 𝑘,𝑚 − 1 𝛾(ℎ − 𝑘,𝑚 − 1), 

𝛾 0,𝑚 = 𝛾 1,𝑚 = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑚 ≥ 0 and 𝛾 ℎ, 0 = 0

Idea to lower bound the number of clicks is to compare 
the number of orthogonal states in two blocks. 

• If this is different add 1 to counter, then look at the 
next blocks.

Note that this does not count all cases


