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. . let us study the difference for
entanglement characterization and manipulation tasks.
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Measures of Entanglement and Magic

= Bipartition in a qubit system. A|B
= Reduced density matrix 14 = trp [ )]

= von Neumann entropy:

S1(tha) = —tr(alogtha)
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Measures of Entanglement and Magic

= Bipartition in a qubit system. A|B = Group of Pauli operators P € P,
= Reduced density matrix 14 = trp [ )] = Pauli subgroup stabilizing )
= von Neumann entropy: Gy ={P: Ply)=|v)}

= Stabilizer nullity

S1(Pa) = —tr(ypalog )
V() =n —log |Gy
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Entanglement manipulation

Task: via Alice and Bob want to distill a Task: via Alice and Bob want to distill a state
Bell pair from an entangled state |1) oy

0 LocC @

= For pure states the optimal number of Bell pair ~ «  For pure states the optimal number of Bell pair is
is the von Neumann entropy the von Neumann entropy

M, = S1(14) M- = S5i(¢4)
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Stabilizer States

Consider k mutually commuting, and independent Pauli operators S = {Pl, ce ,Pk}.

I+ P
o= —

PcS

S is the generating set of the stabilizer group GG (abelian subgroup of P,,) associated with o.

G| =25 = 2F

Pure stabilizer states |o) VP € G, Plo) = |o).

All the properties of o can be determined by looking at .S.
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Entanglement for stabilizer states

= Entanglement is completely determined by S. A
. Sa={PcS|P=P,xIz) o
= Sy={PecS|P=1,Q Pg} s
. Sup={PcS|P¢SsUSs} 3
Example
Si(oa) = |S;B| [EPR) — 00>j§|11>

Sa = {}7 Sp = {}’ Sap = {XXa ZZ}
S, (trz(|[EPRYEPR/)) = 1

Fattal et al., Entanglement in the stabilizer formalism, ArXiv:quant-ph/0406168
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Magic-States — r-compressible states

= Consider a state |1)) with stabilizer nullity v.

= We can associate a stabilizer group G generated by S.

Ztr hi)h; Hﬂ

PecS

= |4) is v-compressible because it can always be written as |1)) = C(|0)n—» & |@),)

= Fact: the stabilizer group GG can be learned efficiently.

Leone et al., Learning t-doped stabilizer states, Quantum 8, 1361 (2024). ® |7 o0f 16



Learning algorithm for &

Algorithm:

Input O((n + log(1/d))e) copies of |¢), €,6 € (0,1)

Output Stabilizer set S.

1. Perform Bell difference Sampling. The span of the samples is S+

2. S = Ker(S') (Gaussian Elimination)

¥) (A

) —— /X

o (=
b)) — =

Grewal et al., Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, ArXiv: 2305 & | s of 16



Learning algorithm for &

Algorithm:

Input O((n + log(1/d))e) copies of |¢), €, € (0,1)

Output Stabilizer set S.

1. Perform Bell difference Sampling. The span of the samples is S+

2. S = Ker(S') (Gaussian Elimination)

Grewal et al., Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, ArXiv: 2305 & | s of 16



Learning algorithm for &

Algorithm:

Input O((n + log(1/d))e) copies of |¢), €, € (0,1)

Output Stabilizer set S.

1. Perform Bell difference Sampling. The span of the samples is S+

2. S = Ker(S') (Gaussian Elimination)

- The group G = (5) contains G.
- |9) is e-close in trace distance to some state with a stabilizer group G.

= Runtime O(n?(n +log(1/6))e)

Grewal et al., Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates, ArXiv: 2305 & | s of 16



Entanglement vs Magic-dominated

S1(a) = w(v)

S1(tha)

O(v)



Entanglement vs Magic-dominated

S1(¥a) = w(v) S1(¥a) = O(v)
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Stabilizer Entanglement

= Let |%)) be a state with stabilizer nullity v, stabilizer group G and generating set S.

= Onecanalways: S =S4 USpU S4B
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Stabilizer Entanglement

= Let |%)) be a state with stabilizer nullity v, stabilizer group G and generating set S.
= Onecanalways: S =S4 USpU S4B

Stabilizer Entanglement E (1) = _‘S;B|

Bounds with entanglement entropy

E(¢a) — g < S1(¢p4) < E(tha) +g

« E(34) can be estimated efficiently O(n?)

= v can be estimated efficiently O(n)
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Efficient entanglement characterization for entanglement-
dominated tasks

Task: Aim is to check whether S1(¢4) = ©(f(n4)).

1 is entanglement dominated iff £ (1 4) = w(v)

Given a entanglement class f(ny), if E(14) = f(ny) then S1(v4) = f(na) + o(f(ny)).

Therefore, one estimates S1(14) up to a o(1) relative error.
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Efficient entanglement characterization for entanglement-
dominated tasks

Task: Aim is to check whether S1(¢4) = ©(f(n4)).

1 is entanglement dominated iff £ (1 4) = w(v)

Given a entanglement class f(ny), if E(14) = f(ny) then S1(v4) = f(na) + o(f(ny)).

Therefore, one estimates S1(14) up to a o(1) relative error.

Notice that, the above procedure holds even for states with v = o(n).
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Efficient entanglement distillation for entanglement-dominated task

Theorem There exists a bipartite Clifford unitary that distills a number of Bell pair equals to
M_|_ = E('IpA) — 7//2

which, for entanglement dominated states, is asymptotically (in n) optimal: M /S1(¥4) =1 — o(1).
Moreover, the unitary, can be found by O(n) queries to |1)).
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Efficient entanglement distillation for entanglement-dominated task
Theorem There exists a bipartite Clifford unitary that distills a number of Bell pair equals to
M, = E(¢a) —v/2
which, for entanglement dominated states, is asymptotically (in n) optimal: M /S1(¥4) =1 — o(1).
Moreover, the unitary, can be found by O(n) queries to |1)).
Proof Sketch: S = Sq4 U Sp U Sap, |S| >n —v
= We can complete the stabilizer group .S to a maximal one S¢, describing a stabilizer state |Sc>.
= For S° there exists a unitary U4 ® Ug Clifford that distills up to |SG z|/2 Bell pairs.

= Applying the same unitary on [1)), it transforms S — S’ obtaining M. Bell pairs:

S’ _
M, > BBV gy g
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Efficient entanglement dilution for entanglement-dominated task

Theorem For any state |¢> in the ED phase there exists a stabilizer LOCC protocol for dilution that
requires a number of Bell pairs equal to

M_ = E(¢4) +v/2

which, for entanglement dominated states, is asymptotically (in 7) optimal: M_ /S1(¢4) =1 4+ o(1),
and v bits of classical communication.
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Efficient entanglement dilution for entanglement-dominated task

Theorem For any state |¢> in the ED phase there exists a stabilizer LOCC protocol for dilution that
requires a number of Bell pairs equal to

M_ = E(¢4) +v/2

which, for entanglement dominated states, is asymptotically (in 7) optimal: M_ /S1(¢4) =1 4+ o(1),
and v bits of classical communication.

Proof Sketch : A

= B runs locally the distillation protocol.
Obtaining the state |o')

[

=« Teleport of v/2 qubits of |o’) to A.

= Application of local Cliffords on A and B. [ }m
Equivalent to revert distillation. T B

ANANERL RNARER
1

[

® | 13 of 16



No-go for magic dominated states

Theorem Any efficient state-agnostic protocol that can estimate S1 (1 4) within w(1) relative error for all
MD states. It can distills at most a fraction of o(1) Bell pairs from a magic-dominated state, and diluite
more than a fraction of w(1) Bell pairs from a magic-dominated state.
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No-go for magic dominated states

Theorem Any efficient state-agnostic protocol that can estimate S1 (1 4) within w(1) relative error for all
MD states. It can distills at most a fraction of o(1) Bell pairs from a magic-dominated state, and diluite
more than a fraction of w(1) Bell pairs from a magic-dominated state.

Proof Sketch: Pseudorandom states encoded as magic-states

= Consider the following magic dominated state |¢) = [0),,_, ® |} ap)., with v = O(log®(n)) with ¢ >
1

= Two possible choices either |¢ 4p), is an Haar random state or |¢ 4p), is a pseudo entangled state

= Haar random states have maximal entropy of entanglement S1 (¢f5) ~ ©(log® n), while S1 (¢ 5) =

O(log® m), an efficient algorithm that achieves M., /S; = (1) fraction of distillable Bell pairs would
distinguish pseudo random states from Haar. Consequently, the maximal number of extractable Bell pairs

obeys M, /S1 = o(1)
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Computational phase transition in entanglement manipulation

S1(¢a) = w(v) S1(4a) = O(v)
= Entanglement can be measured up to o(1) = No sample-efficient algorithm to estimate the von
relative error, even if volume law. Neumann entropy S (¢A) within a relative error at
least w(1).

= There exists (and can be efficiently found) an
efficient and state-agnostic deterministic LOCC . No sample-efficient algorithm that distills more
that distills an optimal number of Bell pair. than a 0(1) vanishing fraction of Bell pairs with

_ _ . respect to the optimal amount.
. There exists a optimal efficient and state-

agnostic LOCC protocol that diluite a ED state. ~ «  No sample-efficient algorithm can dilute |1) using

less than w(.S1) Bell pairs for general MD states
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Future directions

= Generalizing the result to a more robust measure of magic?
= A Computational phase transition in magic-state distillation?

= From pseudomagic, we know that there is no-agnostic and efficient algorithm that distill more than
O(log M (1)) magic states for general states.

= |s the magic-dominated phase useful for agnostic and efficient magic-state distillation?

= Generalization to the CV case. Analizing the connection between non-Gaussianity and Entanglement.
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= Generalizing the result to a more robust measure of magic?
= A Computational phase transition in magic-state distillation?

= From pseudomagic, we know that there is no-agnostic and efficient algorithm that distill more than
O(log M (1)) magic states for general states.

= |s the magic-dominated phase useful for agnostic and efficient magic-state distillation?

= Generalization to the CV case. Analizing the connection between non-Gaussianity and Entanglement.

Thanks for your attention!
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