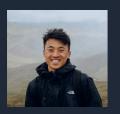
Magic-induced computational separation in entanglement theory

Salvatore F.E. Oliviero

Talk based on: ArXiv: 2403.19610

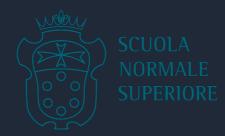
YQIS 2024

Joint work with:



Andi Gu

Lorenzo Leone



What is the difference between high magic entanglement and low magic entanglement?

- What is the difference between high magic entanglement and low magic entanglement?
- For states with no magic, estimate entanglement is easy.

- What is the difference between high magic entanglement and low magic entanglement?
- For states with no magic, estimate entanglement is easy.
- Operational approach: let us study the difference for entanglement characterization and manipulation tasks.

Measures of Entanglement and Magic

How do we measure entanglement?

- ullet Bipartition in a qubit system. A|B
- ullet Reduced density matrix $\psi_A=\operatorname{tr}_B|\psi\rangle\!\langle\psi|$
- von Neumann entropy:

$$S_1(\psi_A) = -\operatorname{tr}(\psi_A \log \psi_A)$$

Measures of Entanglement and Magic

How do we measure entanglement?

- ullet Bipartition in a qubit system. A|B
- ullet Reduced density matrix $\psi_A=\operatorname{tr}_B|\psi
 angle\!\langle\psi|$
- von Neumann entropy:

$$S_1(\psi_A) = -\operatorname{tr}(\psi_A \log \psi_A)$$

How do we measure magic?

- ullet Group of Pauli operators $P\in\mathcal{P}_n$
- ullet Pauli subgroup stabilizing $|\psi
 angle$

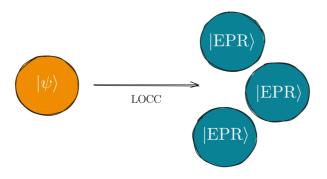
$$G_{\psi} = \{P: P|\psi
angle = |\psi
angle\}$$

Stabilizer nullity

$$\nu(\psi) = n - \log |G_\psi|$$

Entanglement manipulation

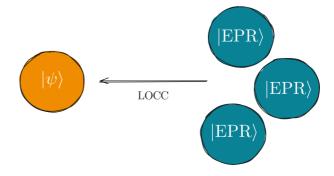
Task: via LOCC Alice and Bob want to distill a Bell pair from an entangled state $|\psi
angle$



 For pure states the optimal number of Bell pair is the von Neumann entropy

$$M_+ = S_1(\psi_A)$$

Task: via LOCC Alice and Bob want to distill a state $|\psi
angle$



 For pure states the optimal number of Bell pair is the von Neumann entropy

$$M_-=S_1(\psi_A)$$

Stabilizer States

ullet Consider k mutually commuting, and independent Pauli operators $S=\{P_1,\ldots,P_k\}.$

$$\sigma = \prod_{P \in S} rac{I + P}{2}$$

• S is the generating set of the stabilizer group G (abelian subgroup of \mathcal{P}_n) associated with σ .

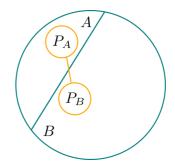
$$|G|=2^{|S|}=2^k$$

- ullet Pure stabilizer states $|\sigma
 angle \ orall P\in G$, $P|\sigma
 angle=|\sigma
 angle$.
- All the properties of σ can be determined by looking at S.

Entanglement for stabilizer states

- Entanglement is completely determined by S.
- $\bullet S_A = \{P \in S | P = P_A \otimes I_B\}$
- $\bullet S_A = \{ P \in S | P = I_A \otimes P_B \}$
- $S_{AB} = \{P \in S | P \notin S_A \cup S_B\}$

$$S_1(\sigma_A) = rac{|S_{AB}|}{2}$$



Example

$$egin{aligned} \ket{ ext{EPR}} &= rac{\ket{00} + \ket{11}}{\sqrt{2}} \ S_A &= \{\}, S_B &= \{\}, S_{AB} &= \{XX, ZZ\} \ S_1(ext{tr}_B(\ket{ ext{EPR}}\!\!rake{ ext{EPR}})) &= 1 \end{aligned}$$

Magic-States $= \nu$ -compressible states

- Consider a state $|\psi\rangle$ with stabilizer nullity ν .
- We can associate a stabilizer group G generated by S.

$$|\psi
angle\!\langle\psi|=\sum_{i=1}^{4^
u}{
m tr}(h_i\psi)h_i\prod_{P\in S}rac{I+P}{2}$$

- ullet $|\psi
 angle$ is u-compressible because it can always be written as $|\psi
 angle=C(|0
 angle_{nu}\otimes|\phi
 angle_
 u)$
- Fact: the stabilizer group G can be learned efficiently.

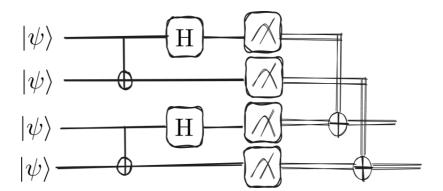
Learning algorithm for G

Algorithm:

Input $O((n+\log(1/\delta))\epsilon)$ copies of $|\psi\rangle$, $\epsilon,\delta\in(0,1)$

Output Stabilizer set \hat{S} .

- 1. Perform Bell difference Sampling. The span of the samples is S^\perp
- 2. $S = \operatorname{Ker}(S^{\perp})$ (Gaussian Elimination)



Learning algorithm for G

Algorithm:

Input $O((n+\log(1/\delta))\epsilon)$ copies of $|\psi\rangle$, $\epsilon,\delta\in(0,1)$

Output Stabilizer set \hat{S} .

- 1. Perform Bell difference Sampling. The span of the samples is S^\perp
- 2. $S = \operatorname{Ker}(S^{\perp})$ (Gaussian Elimination)

Learning algorithm for G

Algorithm:

Input $O((n + \log(1/\delta))\epsilon)$ copies of $|\psi\rangle$, $\epsilon, \delta \in (0,1)$

Output Stabilizer set \hat{S} .

- 1. Perform Bell difference Sampling. The span of the samples is S^\perp
- 2. $S = \operatorname{Ker}(S^{\perp})$ (Gaussian Elimination)
- ullet The group $\hat{G}\equiv\langle\hat{S}
 angle$ contains G.
- $|\psi\rangle$ is ϵ -close in trace distance to some state with a stabilizer group \hat{G} .
- Runtime $O(n^2(n + \log(1/\delta))\epsilon)$

Entanglement vs Magic-dominated

Entanglement-dominated

$$S_1(\psi_A) = \omega(
u)$$

Magic-dominated

$$S_1(\psi_A) = O(
u)$$

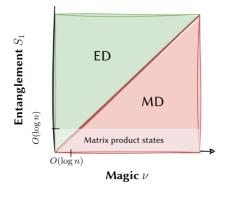
Entanglement vs Magic-dominated

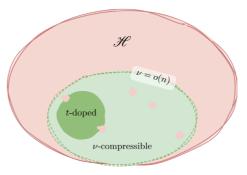
Entanglement-dominated

$$S_1(\psi_A) = \omega(
u)$$

Magic-dominated

$$S_1(\psi_A) = O(
u)$$





- Let $|\psi\rangle$ be a state with stabilizer nullity u, stabilizer group G and generating set S.
- ullet One can always: $S=S_A\cup S_B\cup S_{AB}$

- Let $|\psi\rangle$ be a state with stabilizer nullity ν , stabilizer group G and generating set S.
- ullet One can always: $S=S_A\cup S_B\cup S_{AB}$

Stabilizer Entanglement $E(\psi_A)=rac{|S_{AB}|}{2}$

- Let $|\psi\rangle$ be a state with stabilizer nullity ν , stabilizer group G and generating set S.
- ullet One can always: $S=S_A\cup S_B\cup S_{AB}$

Stabilizer Entanglement $E(\psi_A)=rac{|S_{AB}|}{2}$

Bounds with entanglement entropy

- Let $|\psi\rangle$ be a state with stabilizer nullity ν , stabilizer group G and generating set S.
- ullet One can always: $S=S_A\cup S_B\cup S_{AB}$

Stabilizer Entanglement
$$E(\psi_A)=rac{|S_{AB}|}{2}$$

Bounds with entanglement entropy

$$E(\psi_A) - rac{
u}{2} \leq S_1(\psi_A) \leq E(\psi_A) + rac{
u}{2}$$

- Let $|\psi\rangle$ be a state with stabilizer nullity ν , stabilizer group G and generating set S.
- ullet One can always: $S=S_A\cup S_B\cup S_{AB}$

Stabilizer Entanglement
$$E(\psi_A)=rac{|S_{AB}|}{2}$$

Bounds with entanglement entropy

$$E(\psi_A) - rac{
u}{2} \leq S_1(\psi_A) \leq E(\psi_A) + rac{
u}{2}$$

- ullet $E(\psi_A)$ can be estimated efficiently $O(n^2)$
- ullet u can be estimated efficiently O(n)

ullet Task: Aim is to check whether $S_1(\psi_A)=\Theta(f(n_A)).$

- Task: Aim is to check whether $S_1(\psi_A) = \Theta(f(n_A))$.
- ullet ψ is entanglement dominated iff $E(\psi_A)=\omega(
 u)$

- **Task:** Aim is to check whether $S_1(\psi_A) = \Theta(f(n_A))$.
- ullet ψ is entanglement dominated iff $E(\psi_A)=\omega(
 u)$
- ullet Given a entanglement class $f(n_A)$, if $E(\psi_A)=f(n_A)$ then $S_1(\psi_A)=f(n_A)+o(f(n_A))$.

- Task: Aim is to check whether $S_1(\psi_A) = \Theta(f(n_A))$.
- ullet ψ is entanglement dominated iff $E(\psi_A)=\omega(
 u)$
- ullet Given a entanglement class $f(n_A)$, if $E(\psi_A)=f(n_A)$ then $S_1(\psi_A)=f(n_A)+o(f(n_A))$.
- Therefore, one estimates $S_1(\psi_A)$ up to a o(1) relative error.

- Task: Aim is to check whether $S_1(\psi_A) = \Theta(f(n_A))$.
- ullet ψ is entanglement dominated iff $E(\psi_A)=\omega(
 u)$
- ullet Given a entanglement class $f(n_A)$, if $E(\psi_A)=f(n_A)$ then $S_1(\psi_A)=f(n_A)+o(f(n_A))$.
- ullet Therefore, one estimates $S_1(\psi_A)$ up to a o(1) relative error.
- Notice that, the above procedure holds even for states with u=o(n).

Efficient entanglement distillation for entanglement-dominated task

Theorem There exists a bipartite Clifford unitary that distills a number of Bell pair equals to

$$M_+ = E(\psi_A) -
u/2$$

which, for entanglement dominated states, is asymptotically (in n) optimal: $M_+/S_1(\psi_A)=1-o(1)$. Moreover, the unitary, can be found by O(n) queries to $|\psi\rangle$.

Efficient entanglement distillation for entanglement-dominated task

Theorem There exists a bipartite Clifford unitary that distills a number of Bell pair equals to

$$M_+=E(\psi_A)-
u/2$$

which, for entanglement dominated states, is asymptotically (in n) optimal: $M_+/S_1(\psi_A)=1-o(1)$. Moreover, the unitary, can be found by O(n) queries to $|\psi\rangle$.

Proof Sketch: $S = S_A \cup S_B \cup S_{AB}$, $|S| \geq n -
u$

- We can complete the stabilizer group S to a maximal one S^c , describing a stabilizer state $|S^c\rangle$.
- ullet For S^c there exists a unitary $U_A\otimes U_B$ Clifford that distills up to $|S^c_{AB}|/2$ Bell pairs.
- ullet Applying the same unitary on $|\psi
 angle$, it transforms S o S' obtaining M_+ Bell pairs:

$$M_+ \geq rac{|S_{AB}|-
u}{2} = E(\psi_A)-
u/2$$

Efficient entanglement dilution for entanglement-dominated task

Theorem For any state $|\psi\rangle$ in the ED phase there exists a stabilizer LOCC protocol for dilution that requires a number of Bell pairs equal to

$$M_-=E(\psi_A)+
u/2$$

which, for entanglement dominated states, is asymptotically (in n) optimal: $M_-/S_1(\psi_A)=1+o(1)$, and ν bits of classical communication.

Efficient entanglement dilution for entanglement-dominated task

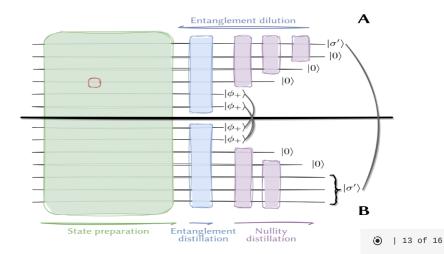
Theorem For any state $|\psi\rangle$ in the ED phase there exists a stabilizer LOCC protocol for dilution that requires a number of Bell pairs equal to

$$M_-=E(\psi_A)+
u/2$$

which, for entanglement dominated states, is asymptotically (in n) optimal: $M_-/S_1(\psi_A)=1+o(1)$, and ν bits of classical communication.

Proof Sketch:

- ullet B runs locally the distillation protocol. Obtaining the state $|\sigma'
 angle$
- ullet Teleport of u/2 qubits of $|\sigma'\rangle$ to A.
- Application of local Cliffords on A and B.
 Equivalent to revert distillation.



No-go for magic dominated states

Theorem Any efficient state-agnostic protocol that can estimate $S_1(\psi_A)$ within $\omega(1)$ relative error for all MD states. It can distills at most a fraction of o(1) Bell pairs from a magic-dominated state, and diluite more than a fraction of $\omega(1)$ Bell pairs from a magic-dominated state.

No-go for magic dominated states

Theorem Any efficient state-agnostic protocol that can estimate $S_1(\psi_A)$ within $\omega(1)$ relative error for all MD states. It can distills at most a fraction of o(1) Bell pairs from a magic-dominated state, and diluite more than a fraction of $\omega(1)$ Bell pairs from a magic-dominated state.

Proof Sketch: Pseudorandom states encoded as magic-states

- Consider the following magic dominated state $|\psi\rangle=|0\rangle_{nu}\otimes|\phi_{AB}\rangle_{
 u}$, with $u=\Theta(\log^c(n))$ with c>1
- Two possible choices either $|\phi_{AB}\rangle_{\nu}$ is an Haar random state or $|\phi_{AB}\rangle_{\nu}$ is a pseudo entangled state
- Haar random states have maximal entropy of entanglement $S_1(\phi_{AB}^H)\sim\Theta(\log^c n)$, while $S_1(\phi_{AB}^P)=\Theta(\log^{c'} n)$, an efficient algorithm that achieves $M_+/S_1=\Omega(1)$ fraction of distillable Bell pairs would distinguish pseudo random states from Haar. Consequently, the maximal number of extractable Bell pairs obeys $M_+/S_1=o(1)$

Computational phase transition in entanglement manipulation

Entanglement-Dominated

$$S_1(\psi_A) = \omega(
u)$$

- Entanglement can be measured up to o(1) relative error, even if volume law.
- There exists (and can be efficiently found) an efficient and state-agnostic deterministic LOCC that distills an optimal number of Bell pair.
- There exists a optimal efficient and stateagnostic LOCC protocol that diluite a ED state.

Magic-Dominated

$$S_1(\psi_A) = O(
u)$$

- No sample-efficient algorithm to estimate the von Neumann entropy $S_1(\psi_A)$ within a relative error at least $\omega(1)$.
- No sample-efficient algorithm that distills more than a o(1) vanishing fraction of Bell pairs with respect to the optimal amount.
- No sample-efficient algorithm can dilute $|\psi
 angle$ using less than $\omega(S_1)$ Bell pairs for general MD states

Future directions

- Generalizing the result to a more robust measure of magic?
- A Computational phase transition in magic-state distillation?
 - From pseudomagic, we know that there is no-agnostic and efficient algorithm that distill more than $O(\log M(\psi))$ magic states for general states.
 - Is the magic-dominated phase useful for agnostic and efficient magic-state distillation?
- Generalization to the CV case. Analizing the connection between non-Gaussianity and Entanglement.

Future directions

- Generalizing the result to a more robust measure of magic?
- A Computational phase transition in magic-state distillation?
 - From pseudomagic, we know that there is no-agnostic and efficient algorithm that distill more than $O(\log M(\psi))$ magic states for general states.
 - Is the magic-dominated phase useful for agnostic and efficient magic-state distillation?
- Generalization to the CV case. Analizing the connection between non-Gaussianity and Entanglement.

Thanks for your attention!