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Why study random circuits?
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1. Analytically tractable limit of many-body dynamics
[Fisher et al. (2023) Ann. Rev. Of Cond. Matter Phys.]

2. Tools borrowed from quantum pseudo-randomness,

k-designs, frame potentials...etc.
[Roberts & Yochida (2017) JHEP]

3. Classical mappings for entropy growth and operator

spreading

[Nahum, Vijay & Haah (2017) PRX]
4. The role of symmetries in limiting ergodicity O,

[Lastres, Pollman & Moudgalya (2024) arXiv:2409.11407]

[Liu, Hulse and Marvian (2024) arXiv:-2408. 14463] Figure adapted from M. P. Fisher et al. Ann. Rev.

of Cond. Matter Phys. (2023). https://doi.org/
10.1146/annurev-conmatphys-031720-030658



Why study random circuits?

U‘I‘

A
=
O
-
=
=

1. Analytically tractable limit of many-body dynamics
[Fisher et al. (2023) Ann. Rev. Of Cond. Matter Phys.]

2. Tools borrowed from quantum pseudo-randomness,

k-designs, frame potentials...etc.
[Roberts & Yochida (2017) JHEP]

3. Classical mappings for entropy growth and operator
spreading
[Nahum, Vijay & Haah (2017) PRX]

4. The role of symmetries in limiting ergodicity O,
[Lastres, Pollman & Moudgalya (2024) arXiv:2409.11407]
[Liu, Hulse and Marvian (2024) arXiv:-2408. 14463] Figure adapted from M. P. Fisher et al. Ann. Rev.

of Cond. Matter Phys. (2023). https://doi.org/
10.1146/annurev-conmatphys-031720-030658



Why study random circuits?

U‘I‘

A
=
O
-
=
=

1. Analytically tractable limit of many-body dynamics
[Fisher et al. (2023) Ann. Rev. Of Cond. Matter Phys.]

2. Tools borrowed from quantum pseudo-randomness,

k-designs, frame potentials...etc.
[Roberts & Yochida (2017) JHEP]

3. Classical mappings for entropy growth and operator
spreading
[Nahum, Vijay & Haah (2017) PRX]

4. The role of symmetries in limiting ergodicity O,
[Lastres, Pollman & Moudgalya (2024) arXiv:2409.11407]
[Liu, Hulse and Marvian (2024) arXiv:-2408. 14463] Figure adapted from M. P. Fisher et al. Ann. Rev.

of Cond. Matter Phys. (2023). https://doi.org/
10.1146/annurev-conmatphys-031720-030658



Why study random circuits?

1. Analytically tractable limit of many-body dynamics
[Fisher et al. (2023) Ann. Rev. Of Cond. Matter Phys.]

2. Tools borrowed from quantum pseudo-randomness,

k-designs, frame potentials...etc.
[Roberts & Yochida (2017) JHEP]

3. Classical mappings for entropy growth and operator
spreading
[Nahum, Vijay & Haah (2017) PRX]

4. The role of symmetries in limiting ergodicity
[Lastres, Pollman & Moudgalya (2024) arXiv:2409.11407]
[Liu, Hulse and Marvian (2024) arXiv:2408.14463]

U‘I‘

A
=
O
-
=
=

&%

Figure adapted from M. P. Fisher et al. Ann. Rev.
of Cond. Matter Phys. (2023). https://doi.org/
10.1146/annurev-conmatphys-031720-030658



Ergodicity-breaking in literature

1. Time-periodicity permits e
ergodicity breaking via biased 01 B R 20
sampling of the unitary 'bricks’ _
[Stinderhauf et al. (2018) PRB]
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[Farshi et al. (2018) JMP. (2023) PRX

Quantum] Figure reproduced from Farshi et al. (2023).
https://journals.aps.org/prxquantum/abstract/
10.1103/PRXQuantum.4.030302
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3. Numerical transition signals
integrability-breaking
[Hahn & Colmanerez (2024) PRB]
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Some open questions

1. Analytical models for random circuit localisation (...in Clitfford circuits)?
2. What's the stability of localisation against perturbations?

3. Can ergodicity and localisation coexist in many-body dynamics?

4.* |s this the same phenomena as many-body localisation?

Local

Ergodic fragment  conserved  Ergodic fragment
charge



Today's talk

1. Floqguet model of Clittords with
perturbations

2. Wall contigurations
3. Stability of fragmentation

4. Entanglement signatures ot non-
ergodicity

5. Further work & conclusions



Disordered Floquet moael

uniformly samplea

f single-qubit unitary

Floquet symmetry

orobability of P

perturbation

= periodicity in
discrete time

Spatial disorder by
i.i.d sampling gates

uniformly sampled
entangling Clitford gate



Summary of results
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Local

Ergodic fragment  conserved  Ergodic fragment
charge

e

1. The infinite chain fragments in

operator space for p < 1
2. Fragments are locally ergodic

3. Atypical localising regions harbour
local conserved quantities

4. Entanglement is limited across
fragments boundaries

5. Percolation transition atp — 1
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The Clitfford-|

1. Structure of

P - U'PU

localising regions in

Clifford?
2. Is this behaviour

Clifford specific?
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Operator localisation

k-walls: Clifford gate configurations
that arrest the spreading of
arbitrary operators in k steps

O-walls are product unitaries that
prevent the spreading of any operator

Ut(A(X)lC@lR)U_t:A/(t)@lR U =u & us
L C R Clifford group equivalence classes w.r.t.
[ ] __ product unitaries
1Y
L ? W
- / y

||
= 1 SWAP  FSWAP

Controlled-class Dual unitary classes




T-walls in the Clitftord group

T-walls cannot contain dual-unitary Controlled-class can have local
classes due to ballistic spreading conservation laws, with restricted
of arbitrary operators spreading

\ q’ q/ / X P
B Esas



T-walls in the Clitftord group

1. Left-right equivalence

2. Local conserved charge
nosted in the centre

1€

3. Near wall-boundaries one
must have CZ-like gates

Multiplicity of walls in Haar sampling Infinite chain hosts many
via loop diagrams : fragments with high

P(l—Waﬂ) ~ 2% probability



Fragmentation
L O R

Left/right invariant subspaces:
[1 — A@{l,O’C}@lR
R = ]_L@{]_,O'C}@A

[ [

Fragments commute and are < > —
closed under multiplication

Bulk perturbations Edge perturbations
U, preserve |ocalisation destabilise walls

Exponential wall distribution in space:

No. fragments Nf ~ n/,u
as 11— OC P(x) ~ exp (—z/p)

\U unable localisation length:

= 1/|log(1 — P(walls))| ~ 44/(1 — p)

Fragment space is exponential:

dim F ~ eXPp (n / ,u) Operator percolation transitionas p — 1



Numerical setup

[
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1. Transport: no 1-walls in the circuit,

. . Are fragments chaotic?
perturbations everywhere with prob. p

2. Perturbed wall: random 1-wall perturbed,

?
fragments perturbed with prob. p Are fragments stable

3. Localisation: random 1-wall without ] C
. . Signatures of localisation?
perturbations, fragments perturbed with prob. p



Entanglement signature

Entropy for randomly sampled 1-wall

p(t) = TrL[U'(10){0])*" U]
SYY = —Tr[plog, p]

Stabiliser rank decreases by at
most unity across wall due to
conserved central charge:

0< SN <1

Perturbations generate
stabilizer equipartition across
disorder instances:

(SVNY < 2/3

+

Average entropy (S ")

e

S

[—

n =10,p = 0.5, Ngamples = 10

Perturbed wall / no wall instances
generate near-maximal entanglement

—— Transport (no wall)
— Perturbed wall

— Localisation
-=-=-=Max. subsystem entropy
----Stabiliser equipartition

Bounded VN entropy across
unperturbed walls

Floquet time ¢



Further work

What is the form of general Qudits & higher
form of k-walls? dimensions?




Conclusion

1. Robust non-ergodicity in MHM

S I Local
the thermoa ynamic limit Ergodic fragment  conserved  Ergodic fragment

charge

2. Emergent symmetries e
fragment an interacting p
system
3. Localised regions are .i
weakly entanglea t
4. Spectral signatures of

X

chaos...



Thank you for your attention!



Additional results

1. Higher-order walls
2. Spectral probes of chaos

3. Restoring ergodicity ana
approximate Haar randomness



Higher-order walls

RS NYS

SWAP-like 2-walls have local Non-intertering FSWAP- Interference permits
charge oscillating in central ike 2-walls host loca ocalisation without
space charges conserved charges

Sampling long walls are ON\?1/6\""! 9\2 /10)\ %!
i : — | = | == < P(k-wall) < —
exponentially suppressed: 19/ 9\ 19 19 19



Spectral probes of chaos

Spectral form factor
dim H

() = (D) = (3 o)

a,b=1

0

Probes level repulsion in

quasi-energy window ¢

For Haar-ensemble, form factor is

exactly:
D? ift=0
Kaar(t) =t ift <D
D it>D

D =dimH

(Dip)
‘Ramp’

‘Plateau’

< wtpwp]>

Ensemble average of
Pauli auto-correlators

Form factor respects Pauli fragmentation,

hence for two Haar-fragments we expect:

K(t) = t*+ O(t)



Fragmentation and restoring ergodicity

n = 107p — 17 Nsamples — 104

Sy Yl dim?2 i i
dim” H ; ; ' Localised system has

approximately quadratic ramp

K(1)

—~

Spectral form factor K(7)

dim H- Emergent (Thouless)-

timescale bevond which level
Perturbed walls lead to y

. o correlations are Haar-like
transient localisation

—— Localisation
—— Perturbed wall

— Transport (no wall)

— Analytic Haar

(dim 1) dim H
Inverse level spacing ¢



