Learning quantum states and unitaries of bounded gate complexity

Laura Lewis

Joint work with Haimeng Zhao, Ishaan Kannan, Yihui Quek, Hsin-Yuan Huang, and Matthias C. Caro

arXiv:2310.19882, 2023

PRX Quantum, 2024

Tomography is a fundamental task in quantum information and physics.

 1 [Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023]

Laura Lewis Learning quantum states and unitaries 1 / 24

Tomography is a fundamental task in quantum information and physics.

However, it infamously requires exponentially many resources in general 1 .

 1 [Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023]

Laura Lewis **Learning quantum states and unitaries** 1 / 24

Tomography is a fundamental task in quantum information and physics.

However, it infamously requires exponentially many resources in general 1 .

What about quantum states/unitaries of bounded gate complexity?

 1 [Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023]

Laura Lewis **Learning quantum states and unitaries** 1 / 24

Tomography is a fundamental task in quantum information and physics.

However, it infamously requires exponentially many resources in general 1 .

What about quantum states/unitaries of bounded gate complexity?

Can we relate the complexity of learning quantum states/unitaries to that of creating them?

 1 [Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023]

Quantum system

Quantum system

Copies of quantum system

Measurement

Copies of quantum system

Measurement

Given N samples of an *n*-qubit quantum state ρ , learn $\hat{\rho}$ such that

$$
\mathrm{d}_{\mathsf{tr}}(\hat{\rho}, \rho) = \frac{1}{2} \|\hat{\rho} - \rho\|_1 < \epsilon.
$$

Quantum Process Tomography

Quantum circuit

Quantum Process Tomography

Repetitions of quantum circuit

Measurement

Quantum Process Tomography

Repetitions of quantum circuit

Measurement

Given N queries to an n-qubit unitary U, learn \hat{U} such that

$$
\mathrm{d}_\diamond(\hat{U},U)=\max_{\rho}\left\|(\hat{U}\otimes I)\rho(\hat{U}\otimes I)^\dagger-(U\otimes I)\rho(U\otimes I)^\dagger\right\|_1<\epsilon.
$$

Measures of Complexity

We want to minimize the sample complexity, i.e., the number N of copies of ρ or queries to U.

Measures of Complexity

We want to minimize the *sample complexity*, i.e., the number N of copies of ρ or queries to U.

We can also consider the *computational complexity*, i.e., the runtime of an algorithm.

Both quantum state and process tomography are known to require a sample complexity of $\Theta(4^n)$ in general².

 2 [Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023] ³[Poulin, Qarry, Somma, Verstraete, 2011]

Previous Work

Both quantum state and process tomography are known to require a sample complexity of $\Theta(4^n)$ in general².

This means the general tomography is practically infeasible.

 2 [Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023] ³[Poulin, Qarry, Somma, Verstraete, 2011]

Previous Work

Both quantum state and process tomography are known to require a sample complexity of $\Theta(4^n)$ in general².

This means the general tomography is practically infeasible.

But physical quantum states/unitaries have bounded gate complexity³.

 2 [Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023] ³[Poulin, Qarry, Somma, Verstraete, 2011]

But physical quantum states/unitaries have bounded gate complexity⁴.

4 [Poulin, Qarry, Somma, Verstraete, 2011]

Laura Lewis Learning quantum states and unitaries 9 / 24

But physical quantum states/unitaries have bounded gate complexity⁴.

The set of quantum states reachable by poly-time Hamiltonian evolution is exponentially small.

4 [Poulin, Qarry, Somma, Verstraete, 2011]

But physical quantum states/unitaries have bounded gate complexity⁴.

The set of quantum states reachable by poly-time Hamiltonian evolution is exponentially small.

4 [Poulin, Qarry, Somma, Verstraete, 2011]

Laura Lewis Learning quantum states and unitaries 9 / 24

But physical quantum states/unitaries have bounded gate complexity⁵.

The set of quantum states reachable by poly-time Hamiltonian evolution is exponentially small.

⁵[Poulin, Qarry, Somma, Verstraete, 2011]

Learning States of Bounded Gate Complexity

Learning States of Bounded Gate Complexity

Given N copies of an n-qubit quantum state $\rho = |\psi\rangle\langle\psi|$ with $|\psi\rangle = U\ket{0}^{\otimes n}$ where U consists of G gates, learn $\hat{\rho}$ such that

$$
d_{\mathsf{tr}}(\hat{\rho}, \rho) = \frac{1}{2} \|\hat{\rho} - \rho\|_1 < \epsilon.
$$

Learning Unitaries of Bounded Gate Complexity

Learning Unitaries of Bounded Gate Complexity

Given N queries to an *n*-qubit unitary U consisting of G gates, learn \hat{U} such that

$$
\mathrm{d}_\diamond(\hat{U}, U) = \max_{\rho} \left\| (\hat{U} \otimes I) \rho (\hat{U} \otimes I)^{\dagger} - (U \otimes I) \rho (U \otimes I)^{\dagger} \right\|_1 < \epsilon.
$$

Outline

[Main Results](#page-26-0)

[Sample Complexity Upper Bounds](#page-38-0)

Outline

[Main Results](#page-26-0)

[Sample Complexity Upper Bounds](#page-38-0)

Sample Complexity for State Learning

We fully characterize the sample complexity for the state case.

 6 [Aaronson, 2018]

Sample Complexity for State Learning

We fully characterize the sample complexity for the state case.

Theorem (State learning)

The number of samples necessary and sufficient to learn an n-qubit quantum pure state with circuit complexity G within ϵ trace distance whp is

$$
N = \tilde{\Theta}(G/\epsilon^2).
$$

Sample Complexity for State Learning

We fully characterize the sample complexity for the state case.

Theorem (State learning)

The number of samples necessary and sufficient to learn an n-qubit quantum pure state with circuit complexity G within ϵ trace distance whp is

$$
N = \tilde{\Theta}(G/\epsilon^2).
$$

Previously, only an upper bound of $\tilde{\mathcal{O}}(nG^2/\epsilon^4)$ was known 6 .

 6 [Aaronson, 2018]

Sample Complexity for Unitary Learning (Worst-Case)

Theorem (Worst-case unitary learning)

Any quantum algorithm learning an n-qubit unitary with circuit complexity G in diamond distance whp must use at least

$$
\Omega(2^{\min\{G/(2C),n/2\}}/\epsilon)
$$

queries. Meanwhile, there exists an algorithm using

 $\tilde{\mathcal{O}}(2^nG/\epsilon)$

queries.

Sample Complexity for Unitary Learning (Worst-Case)

Theorem (Worst-case unitary learning)

Any quantum algorithm learning an n-qubit unitary with circuit complexity G in diamond distance whp must use at least

$$
\Omega(2^{\min\{G/(2C),n/2\}}/\epsilon)
$$

queries. Meanwhile, there exists an algorithm using

 $\tilde{\mathcal{O}}(2^nG/\epsilon)$

queries.

Thus, we can't hope for the same scaling as the state case for this distance metric.

Sample Complexity for Unitary Learning (Average-Case)

Instead, we turn to an average-case distance metric

$$
\mathrm{d}_{\mathrm{avg}}(U,V)=\sqrt{\mathop{\mathbb{E}}\limits_{\ket{\psi}\sim\mu}}[\mathrm{d}_{\mathrm{tr}}(U\ket{\psi},V\ket{\psi})^2].
$$

Sample Complexity for Unitary Learning (Average-Case)

Instead, we turn to an average-case distance metric

$$
\mathrm{d}_{\mathrm{avg}}(U,V)=\sqrt{\mathop{\mathbb{E}}\limits_{\ket{\psi}\sim\mu}}[\mathrm{d}_{\mathrm{tr}}(U\ket{\psi},V\ket{\psi})^2].
$$

Theorem (Average-case unitary learning)

There exists an algorithm learning an n-qubit unitary with circuit complexity G in root mean squared trace distance whp using

$$
N = \tilde{\mathcal{O}}\left(G \min\left\{\frac{1}{\epsilon^2}, \frac{\sqrt{2^n}}{\epsilon}\right\}\right)
$$

queries. Meanwhile, at least

 $\Omega(G/\epsilon)$

queries are necessary.

Laura Lewis Learning quantum states and unitaries 17 / 24

Meanwhile, we prove strong computational limitations on learning even simple states/unitaries.

Meanwhile, we prove strong computational limitations on learning even simple states/unitaries.

Theorem (Computational hardness)

Any quantum algorithm that learns an n-qubit state/unitary with circuit complexity G to within ϵ trace distance/root mean squared trace distance requires

$\exp(\Omega(\min(G, n)))$

time, assuming the quantum sub-exponential hardness of RingLWE. Meanwhile, for $G = \mathcal{O}(\log n)$, an efficient learning algorithm exists.

Computational Hardness

We establish a transition point of computational efficiency at $G = \mathcal{O}(\log n)$.

Computational Hardness

We establish a transition point of computational efficiency at $G = \mathcal{O}(\log n)$.

Outline

[Main Results](#page-26-0)

[Sample Complexity Upper Bounds](#page-38-0)

To obtain the $\tilde{\mathcal{O}}(\mathit{G}/\epsilon^2)$ upper bound, we construct a covering net N over states with circuit complexity G.

7 [Badescu, O'Donnell, 2021]

Laura Lewis Learning quantum states and unitaries 21 / 24

To obtain the $\tilde{\mathcal{O}}(\mathit{G}/\epsilon^2)$ upper bound, we construct a covering net N over states with circuit complexity G.

7 [Badescu, O'Donnell, 2021]

Laura Lewis Learning quantum states and unitaries 21 / 24

To obtain the $\tilde{\mathcal{O}}(\mathit{G}/\epsilon^2)$ upper bound, we construct a covering net N over states with circuit complexity G.

We show that

 $|\mathcal{N}| \leq e^{\tilde{\mathcal{O}}(G)}.$

7 [Badescu, O'Donnell, 2021]

To obtain the $\tilde{\mathcal{O}}(\mathit{G}/\epsilon^2)$ upper bound, we construct a covering net N over states with circuit complexity G.

We show that

$$
|\mathcal{N}| \leq e^{\tilde{\mathcal{O}}(G)}.
$$

Then, we use (modified) quantum hypothesis selection 7 to find a good state.

7 [Badescu, O'Donnell, 2021]

To obtain the $\tilde{\mathcal{O}}(\mathsf{G}/\epsilon^2)$ upper bound for average-case distance, we reduce to state learning by considering the Choi state of a unitary.

To obtain the $\tilde{\mathcal{O}}(\mathsf{G}/\epsilon^2)$ upper bound for average-case distance, we reduce to state learning by considering the Choi state of a unitary.

Namely, we show

$$
c_1 d_{\mathrm{tr}}(|U\rangle\!\rangle, |V\rangle\!\rangle) \leq d_{\mathrm{avg}}(U, V) \leq c_2 d_{\mathrm{tr}}(|U\rangle\!\rangle, |V\rangle\!\rangle),
$$

where $|U\rangle$ denotes the Choi state.

To obtain the $\tilde{\mathcal{O}}(\mathsf{G}/\epsilon^2)$ upper bound for average-case distance, we reduce to state learning by considering the Choi state of a unitary.

Namely, we show

$$
c_1 d_{\mathrm{tr}}(|U\rangle\!\rangle, |V\rangle\!\rangle) \leq d_{\mathrm{avg}}(U, V) \leq c_2 d_{\mathrm{tr}}(|U\rangle\!\rangle, |V\rangle\!\rangle),
$$

where $|U\rangle$ denotes the Choi state.

To obtain the $\tilde{\mathcal{O}}(\mathsf{G}\sqrt{2})$ $\overline{{\mathbb{R}}^{n}/\epsilon})$ for average-case distance, we bootstrap by iteratively applying the above to $(U\hat{U}^\dagger)^p$.

To obtain the $\tilde{\mathcal{O}}(\mathsf{G}/\epsilon^2)$ upper bound for average-case distance, we reduce to state learning by considering the Choi state of a unitary.

Namely, we show

$$
c_1 d_{\mathrm{tr}}(|U\rangle\!\rangle, |V\rangle\!\rangle) \leq d_{\mathrm{avg}}(U, V) \leq c_2 d_{\mathrm{tr}}(|U\rangle\!\rangle, |V\rangle\!\rangle),
$$

where $|U\rangle$ denotes the Choi state.

To obtain the $\tilde{\mathcal{O}}(\mathsf{G}\sqrt{2})$ $\overline{{\mathbb{R}}^{n}/\epsilon})$ for average-case distance, we bootstrap by iteratively applying the above to $(U\hat{U}^\dagger)^p$.

The worst-case distance upper bound then follows by taking $\epsilon/\sqrt{2^n}$ since √

$$
\mathrm{d}_\diamond(U,V)\leq \sqrt{2^n}\mathrm{d}_{\mathrm{avg}}(U,V).
$$

Summary

We obtain effectively optimal algorithms for learning states/unitaries of bounded gate complexity.

Summary

We obtain effectively optimal algorithms for learning states/unitaries of bounded gate complexity.

Summary

We obtain effectively optimal algorithms for learning states/unitaries of bounded gate complexity.

We also show a sharp transition in computational hardness at $G \sim \log n$.

Open Questions

• Can our results be extended to mixed states or quantum channels?

Open Questions

- Can our results be extended to mixed states or quantum channels?
- Can the sample complexity results for unitary learning be made tight with respect to ϵ ?

Open Questions

- Can our results be extended to mixed states or quantum channels?
- Can the sample complexity results for unitary learning be made tight with respect to ϵ ?
- Can we obtain better bounds for a fixed, known circuit structure?