
Learning quantum states and unitaries of

bounded gate complexity

Laura Lewis

Joint work with Haimeng Zhao, Ishaan Kannan, Yihui Quek, Hsin-Yuan Huang, and

Matthias C. Caro

arXiv:2310.19882, 2023

PRX Quantum, 2024

L. Lewis



Motivation

Tomography is a fundamental task in quantum information and

physics.

However, it infamously requires exponentially many resources in

general1.

What about quantum states/unitaries of bounded gate complexity?

Can we relate the complexity of learning quantum states/unitaries

to that of creating them?

1[Haah et al. 2017], [O’Donnell and Wright, 2016], [Haah et al. 2023]
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Quantum State Tomography
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Quantum State Tomography

Given N samples of an n-qubit quantum state ρ, learn ρ̂ such that

dtr(ρ̂, ρ) =
1

2
‖ρ̂− ρ‖1 < ε.
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Quantum Process Tomography
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Quantum Process Tomography

Given N queries to an n-qubit unitary U, learn Û such that

d�(Û,U) = max
ρ

∥∥∥(Û ⊗ I )ρ(Û ⊗ I )† − (U ⊗ I )ρ(U ⊗ I )†
∥∥∥
1
< ε.
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Measures of Complexity

We want to minimize the sample complexity, i.e., the number N of

copies of ρ or queries to U.

We can also consider the computational complexity, i.e., the

runtime of an algorithm.
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Previous Work

Both quantum state and process tomography are known to require

a sample complexity of Θ(4n) in general2.

This means the general tomography is practically infeasible.

But physical quantum states/unitaries have bounded gate

complexity3.

2[Haah et al. 2017], [O’Donnell and Wright, 2016], [Haah et al. 2023]
3[Poulin, Qarry, Somma, Verstraete, 2011]
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Small Corner of Hilbert Space

But physical quantum states/unitaries have bounded gate

complexity4.

The set of quantum states reachable by poly-time Hamiltonian

evolution is exponentially small.

4[Poulin, Qarry, Somma, Verstraete, 2011]
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Learning States of Bounded Gate Complexity

Given N copies of an n-qubit quantum state ρ = |ψ〉〈ψ| with

|ψ〉 = U |0〉⊗n where U consists of G gates, learn ρ̂ such that

dtr(ρ̂, ρ) =
1

2
‖ρ̂− ρ‖1 < ε.
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Learning Unitaries of Bounded Gate Complexity

Given N queries to an n-qubit unitary U consisting of G gates,

learn Û such that

d�(Û,U) = max
ρ

∥∥∥(Û ⊗ I )ρ(Û ⊗ I )† − (U ⊗ I )ρ(U ⊗ I )†
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1
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Outline

Main Results

Sample Complexity Upper Bounds
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Sample Complexity for State Learning

We fully characterize the sample complexity for the state case.

Theorem (State learning)

The number of samples necessary and sufficient to learn an

n-qubit quantum pure state with circuit complexity G within ε

trace distance whp is

N = Θ̃(G/ε2).

Previously, only an upper bound of Õ(nG 2/ε4) was known6.

6[Aaronson, 2018]
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Sample Complexity for Unitary Learning (Worst-Case)

Theorem (Worst-case unitary learning)

Any quantum algorithm learning an n-qubit unitary with circuit

complexity G in diamond distance whp must use at least

Ω(2min{G/(2C),n/2}/ε)

queries. Meanwhile, there exists an algorithm using

Õ(2nG/ε)

queries.

Thus, we can’t hope for the same scaling as the state case for this

distance metric.
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Sample Complexity for Unitary Learning (Average-Case)

Instead, we turn to an average-case distance metric

davg(U,V ) =
√

E
|ψ〉∼µ

[dtr(U |ψ〉 ,V |ψ〉)2].

Theorem (Average-case unitary learning)

There exists an algorithm learning an n-qubit unitary with circuit

complexity G in root mean squared trace distance whp using

N = Õ

(
G min

{
1

ε2
,

√
2n

ε

})

queries. Meanwhile, at least

Ω(G/ε)

queries are necessary.
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Computational Hardness

Meanwhile, we prove strong computational limitations on learning

even simple states/unitaries.

Theorem (Computational hardness)

Any quantum algorithm that learns an n-qubit state/unitary with

circuit complexity G to within ε trace distance/root mean

squared trace distance requires

exp(Ω(min(G , n)))

time, assuming the quantum sub-exponential hardness of

RingLWE. Meanwhile, for G = O(log n), an efficient learning

algorithm exists.
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Computational Hardness

We establish a transition point of computational efficiency at

G = O(log n).
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Outline

Main Results

Sample Complexity Upper Bounds
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State Learning Algorithm

To obtain the Õ(G/ε2) upper bound, we construct a covering net

N over states with circuit complexity G .

We show that

|N | ≤ eÕ(G).

Then, we use (modified) quantum hypothesis selection7 to find a

good state.

7[Badescu, O’Donnell, 2021]
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To obtain the Õ(G/ε2) upper bound, we construct a covering net

N over states with circuit complexity G .

We show that

|N | ≤ eÕ(G).
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Unitary Learning Algorithm

To obtain the Õ(G/ε2) upper bound for average-case distance, we

reduce to state learning by considering the Choi state of a unitary.

Namely, we show

c1 dtr(|U⟫, |V⟫) ≤ davg(U,V ) ≤ c2 dtr(|U⟫, |V⟫),

where |U⟫ denotes the Choi state.

To obtain the Õ(G
√

2n/ε) for average-case distance, we bootstrap

by iteratively applying the above to (UÛ†)p.

The worst-case distance upper bound then follows by taking ε/
√

2n

since

d�(U,V ) ≤
√

2ndavg(U,V ).
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Summary

We obtain effectively optimal algorithms for learning

states/unitaries of bounded gate complexity.

State Unitary (average) Unitary (worst)

Upper Õ
(
G/ε2

)
Õ
(
G min

{
1
ε2
,
√
2n

ε

})
Õ (2nG/ε)

Lower Ω̃
(
G/ε2

)
Ω (G/ε) Ω

(
2min{G/(2C),n/2}/ε

)
We also show a sharp transition in computational hardness at

G ∼ log n.
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(
G/ε2

)
Õ
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Open Questions

• Can our results be extended to mixed states or quantum

channels?

• Can the sample complexity results for unitary learning be

made tight with respect to ε?

• Can we obtain better bounds for a fixed, known circuit

structure?
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