Learning quantum states and unitaries of bounded gate complexity

Laura Lewis

Joint work with Haimeng Zhao, Ishaan Kannan, Yihui Quek, Hsin-Yuan Huang, and Matthias C. Caro

arXiv:2310.19882, 2023

PRX Quantum, 2024

Tomography is a fundamental task in quantum information and physics.

¹[Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023]

Laura Lewis

Learning quantum states and unitaries

Tomography is a fundamental task in quantum information and physics.

However, it infamously requires exponentially many resources in general 1 .

¹[Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023]

Tomography is a fundamental task in quantum information and physics.

However, it infamously requires exponentially many resources in general $^{1}. \label{eq:general}$

What about quantum states/unitaries of bounded gate complexity?

¹[Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023]

Laura Lewis

Learning quantum states and unitaries

Tomography is a fundamental task in quantum information and physics.

However, it infamously requires exponentially many resources in general $^{1}. \label{eq:general}$

What about quantum states/unitaries of bounded gate complexity?

Can we relate the complexity of learning quantum states/unitaries to that of creating them?

¹[Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023]

Quantum system

Quantum system

Copies of quantum system

Measurement

Copies of quantum system

Measurement

Given N samples of an *n*-qubit quantum state ρ , learn $\hat{\rho}$ such that

$$d_{\mathsf{tr}}(\hat{\rho},\rho) = \frac{1}{2} \|\hat{\rho} - \rho\|_1 < \epsilon.$$

Quantum Process Tomography

Quantum circuit

Quantum Process Tomography

Repetitions of quantum circuit

Measurement

Quantum Process Tomography

Repetitions of quantum circuit

Measurement

Given N queries to an *n*-qubit unitary U, learn \hat{U} such that

$$\mathrm{d}_{\diamond}(\hat{U}, U) = \max_{\rho} \left\| (\hat{U} \otimes I) \rho (\hat{U} \otimes I)^{\dagger} - (U \otimes I) \rho (U \otimes I)^{\dagger} \right\|_{1} < \epsilon.$$

Measures of Complexity

We want to minimize the sample complexity, i.e., the number N of copies of ρ or queries to U.

Measures of Complexity

We want to minimize the sample complexity, i.e., the number N of copies of ρ or queries to U.

We can also consider the *computational complexity*, i.e., the runtime of an algorithm.

Both quantum state and process tomography are known to require a sample complexity of $\Theta(4^n)$ in general².

²[Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023]
 ³[Poulin, Qarry, Somma, Verstraete, 2011]

Previous Work

Both quantum state and process tomography are known to require a sample complexity of $\Theta(4^n)$ in general².

This means the general tomography is practically infeasible.

²[Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023]
 ³[Poulin, Qarry, Somma, Verstraete, 2011]

Previous Work

Both quantum state and process tomography are known to require a sample complexity of $\Theta(4^n)$ in general².

This means the general tomography is practically infeasible.

But physical quantum states/unitaries have bounded gate $complexity^3$.

²[Haah et al. 2017], [O'Donnell and Wright, 2016], [Haah et al. 2023]
 ³[Poulin, Qarry, Somma, Verstraete, 2011]

But physical quantum states/unitaries have bounded gate $complexity^4$.

⁴[Poulin, Qarry, Somma, Verstraete, 2011]

But physical quantum states/unitaries have bounded gate $complexity^4$.

The set of quantum states reachable by poly-time Hamiltonian evolution is exponentially small.

⁴[Poulin, Qarry, Somma, Verstraete, 2011]

But physical quantum states/unitaries have bounded gate $complexity^4$.

The set of quantum states reachable by poly-time Hamiltonian evolution is exponentially small.

⁴[Poulin, Qarry, Somma, Verstraete, 2011]

But physical quantum states/unitaries have bounded gate $complexity^5$.

The set of quantum states reachable by poly-time Hamiltonian evolution is exponentially small.

⁵[Poulin, Qarry, Somma, Verstraete, 2011]

Laura Lewis

Learning quantum states and unitaries

Learning States of Bounded Gate Complexity

Learning States of Bounded Gate Complexity

Given N copies of an n-qubit quantum state $\rho = |\psi\rangle\langle\psi|$ with $|\psi\rangle = U |0\rangle^{\otimes n}$ where U consists of G gates, learn $\hat{\rho}$ such that

$$d_{\mathsf{tr}}(\hat{\rho},\rho) = \frac{1}{2} \|\hat{\rho} - \rho\|_1 < \epsilon.$$

Learning Unitaries of Bounded Gate Complexity

Learning Unitaries of Bounded Gate Complexity

Given N queries to an n-qubit unitary U consisting of G gates, learn \hat{U} such that

$$\mathrm{d}_{\diamond}(\hat{U}, U) = \max_{\rho} \left\| (\hat{U} \otimes I) \rho (\hat{U} \otimes I)^{\dagger} - (U \otimes I) \rho (U \otimes I)^{\dagger} \right\|_{1} < \epsilon.$$

Outline

Main Results

Sample Complexity Upper Bounds

Outline

Main Results

Sample Complexity Upper Bounds

Sample Complexity for State Learning

We fully characterize the sample complexity for the state case.

⁶[Aaronson, 2018]

Sample Complexity for State Learning

We fully characterize the sample complexity for the state case.

Theorem (State learning)

The number of samples necessary and sufficient to learn an n-qubit quantum pure state with circuit complexity G within ϵ trace distance whp is

$$N = \tilde{\Theta}(G/\epsilon^2).$$

⁶[Aaronson, 2018]

Sample Complexity for State Learning

We fully characterize the sample complexity for the state case.

Theorem (State learning)

The number of samples necessary and sufficient to learn an n-qubit quantum pure state with circuit complexity G within ϵ trace distance whp is

$$N = \tilde{\Theta}(G/\epsilon^2).$$

Previously, only an upper bound of $\tilde{\mathcal{O}}(nG^2/\epsilon^4)$ was known⁶.

⁶[Aaronson, 2018]

Sample Complexity for Unitary Learning (Worst-Case)

Theorem (Worst-case unitary learning)

Any quantum algorithm learning an n-qubit unitary with circuit complexity G in diamond distance whp must use at least

$$\Omega(2^{\min\{G/(2C),n/2\}}/\epsilon)$$

queries. Meanwhile, there exists an algorithm using

 $\tilde{\mathcal{O}}(2^nG/\epsilon)$

queries.

Sample Complexity for Unitary Learning (Worst-Case)

Theorem (Worst-case unitary learning)

Any quantum algorithm learning an n-qubit unitary with circuit complexity G in diamond distance whp must use at least

 $\Omega(2^{\min\{G/(2C),n/2\}}/\epsilon)$

queries. Meanwhile, there exists an algorithm using

 $\tilde{\mathcal{O}}(2^nG/\epsilon)$

queries.

Thus, we can't hope for the same scaling as the state case for this distance metric.

Sample Complexity for Unitary Learning (Average-Case)

Instead, we turn to an average-case distance metric

$$\mathrm{d}_{\mathrm{avg}}(U,V) = \sqrt{\mathop{\mathbb{E}}_{\ket{\psi} \sim \mu}} [\mathrm{d}_{\mathrm{tr}}(U\ket{\psi}, V\ket{\psi})^2].$$

Sample Complexity for Unitary Learning (Average-Case)

Instead, we turn to an average-case distance metric

$$\mathrm{d}_{\mathrm{avg}}(\textit{U},\textit{V}) = \sqrt{\mathop{\mathbb{E}}_{\ket{\psi} \sim \mu}} [\mathrm{d}_{\mathrm{tr}}(\textit{U}\ket{\psi},\textit{V}\ket{\psi})^2].$$

Theorem (Average-case unitary learning)

There exists an algorithm learning an n-qubit unitary with circuit complexity G in root mean squared trace distance whp using

$$N = \tilde{\mathcal{O}}\left(G\min\left\{\frac{1}{\epsilon^2}, \frac{\sqrt{2^n}}{\epsilon}\right\}\right)$$

queries. Meanwhile, at least

$$\Omega(G/\epsilon)$$

queries are necessary.

Computational Hardness

Meanwhile, we prove strong computational limitations on learning even simple states/unitaries.

Meanwhile, we prove strong computational limitations on learning even simple states/unitaries.

Theorem (Computational hardness)

Any quantum algorithm that learns an n-qubit state/unitary with circuit complexity G to within ϵ trace distance/root mean squared trace distance requires

$\exp(\Omega(\min(G, n)))$

time, assuming the quantum sub-exponential hardness of RingLWE. Meanwhile, for $G = O(\log n)$, an efficient learning algorithm exists.

Computational Hardness

We establish a transition point of computational efficiency at $G = O(\log n)$.

Computational Hardness

We establish a transition point of computational efficiency at $G = O(\log n)$.

Main Results

Sample Complexity Upper Bounds

To obtain the $\tilde{\mathcal{O}}(G/\epsilon^2)$ upper bound, we construct a covering net \mathcal{N} over states with circuit complexity G.

⁷[Badescu, O'Donnell, 2021]

Laura Lewis

Learning quantum states and unitaries

To obtain the $\tilde{\mathcal{O}}(G/\epsilon^2)$ upper bound, we construct a covering net \mathcal{N} over states with circuit complexity G.

⁷[Badescu, O'Donnell, 2021]

Laura Lewis

Learning quantum states and unitaries

To obtain the $\tilde{\mathcal{O}}(G/\epsilon^2)$ upper bound, we construct a covering net \mathcal{N} over states with circuit complexity G.

We show that

$$|\mathcal{N}| \leq e^{ ilde{\mathcal{O}}(G)}$$

⁷[Badescu, O'Donnell, 2021]

To obtain the $\tilde{\mathcal{O}}(G/\epsilon^2)$ upper bound, we construct a covering net \mathcal{N} over states with circuit complexity G.

We show that

$$\mathcal{N}| \leq e^{\tilde{\mathcal{O}}(G)}.$$

Then, we use (modified) quantum hypothesis selection 7 to find a good state.

⁷[Badescu, O'Donnell, 2021]

To obtain the $\tilde{\mathcal{O}}(G/\epsilon^2)$ upper bound for average-case distance, we reduce to state learning by considering the Choi state of a unitary.

To obtain the $\tilde{\mathcal{O}}(G/\epsilon^2)$ upper bound for average-case distance, we reduce to state learning by considering the Choi state of a unitary. Namely, we show

where $|U\rangle$ denotes the Choi state.

To obtain the $\tilde{\mathcal{O}}(G/\epsilon^2)$ upper bound for average-case distance, we reduce to state learning by considering the Choi state of a unitary. Namely, we show

 $c_1 \operatorname{d_{tr}}(|U\rangle\!\!\rangle, |V\rangle\!\!\rangle) \leq \operatorname{d_{avg}}(U, V) \leq c_2 \operatorname{d_{tr}}(|U\rangle\!\!\rangle, |V\rangle\!\!\rangle),$

where $|U\rangle$ denotes the Choi state.

To obtain the $\tilde{\mathcal{O}}(G\sqrt{2^n}/\epsilon)$ for average-case distance, we bootstrap by iteratively applying the above to $(U\hat{U}^{\dagger})^p$.

To obtain the $\tilde{\mathcal{O}}(G/\epsilon^2)$ upper bound for average-case distance, we reduce to state learning by considering the Choi state of a unitary. Namely, we show

 $c_1 \operatorname{d_{tr}}(|U\rangle\!\!\rangle, |V\rangle\!\!\rangle) \leq \operatorname{d_{avg}}(U, V) \leq c_2 \operatorname{d_{tr}}(|U\rangle\!\!\rangle, |V\rangle\!\!\rangle),$

where $|U\rangle$ denotes the Choi state.

To obtain the $\tilde{\mathcal{O}}(G\sqrt{2^n}/\epsilon)$ for average-case distance, we bootstrap by iteratively applying the above to $(U\hat{U}^{\dagger})^p$.

The worst-case distance upper bound then follows by taking $\epsilon/\sqrt{2^n}$ since

$$\mathrm{d}_\diamond(U,V) \leq \sqrt{2^n} \mathrm{d}_{\mathrm{avg}}(U,V).$$

Summary

We obtain effectively optimal algorithms for learning states/unitaries of bounded gate complexity.

Summary

We obtain effectively optimal algorithms for learning states/unitaries of bounded gate complexity.

	State	Unitary (average)	Unitary (worst)
Upper	$\tilde{\mathcal{O}}\left({{\it G}}/{\epsilon^2} ight)$	$\tilde{\mathcal{O}}\left(G\min\left\{\frac{1}{\epsilon^2},\frac{\sqrt{2^n}}{\epsilon}\right\}\right)$	$ ilde{\mathcal{O}}\left(2^n \mathcal{G}/\epsilon\right)$
Lower	$ ilde{\Omega}\left(G/\epsilon^{2} ight)$	$\Omega(G/\epsilon)$	$\Omega\left(2^{\min\{G/(2C),n/2\}}/\epsilon\right)$

Summary

Laura Lewis

We obtain effectively optimal algorithms for learning states/unitaries of bounded gate complexity.

StateUnitary (average)Unitary (worst)Upper $\tilde{\mathcal{O}}(G/\epsilon^2)$ $\tilde{\mathcal{O}}\left(G\min\left\{\frac{1}{\epsilon^2},\frac{\sqrt{2^n}}{\epsilon}\right\}\right)$ $\tilde{\mathcal{O}}(2^nG/\epsilon)$ Lower $\tilde{\Omega}(G/\epsilon^2)$ $\Omega(G/\epsilon)$ $\Omega(2^{\min\{G/(2C),n/2\}}/\epsilon)$

We also show a sharp transition in computational hardness at $G \sim \log n$.

Open Questions

• Can our results be extended to mixed states or quantum channels?

Open Questions

- Can our results be extended to mixed states or quantum channels?
- Can the sample complexity results for unitary learning be made tight with respect to *ε*?

Open Questions

- Can our results be extended to mixed states or quantum channels?
- Can the sample complexity results for unitary learning be made tight with respect to ϵ ?
- Can we obtain better bounds for a fixed, known circuit structure?