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Motivation

A fundamental problem in physics is to learn how the world works.
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Quantum State Tomography

Given N samples of an n-qubit quantum state ρ, learn ρ̂ such that

dtr(ρ̂, ρ) =
1

2
‖ρ̂− ρ‖1 < ε.
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Measures of Complexity

We want to minimize the sample complexity, i.e., the number N of

copies of ρ.

We can also consider the computational complexity, i.e., the

runtime of an algorithm.
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Known Results

Quantum state tomography are known to require a sample

complexity of Θ(4n) in general1.

This means that general tomography is practically infeasible.

Are there ways to circumvent this?

Key Idea: What if we don’t learn a full description of the state?

Can we just learn enough to be useful? i.e., to predict properties?

[Aaronson, 2018]

1[Haah, Harrow, Ji, Wu, Yu, 2017], [O’Donnell and Wright, 2016]
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Shadow Tomography

Let E1, . . . ,EM be two-outcome measurements.

The goal is to

estimate tr(Eiρ) up to ε-error.

Theorem ([Aaronson and Rothblum, STOC 2019])

One can perform shadow tomography with

N = Õ
(
n2 log2(M)

ε8

)
copies of the unknown state ρ.

Later improved by [Badescu and O’Donnell, STOC 2021] to

N = Õ
(
n log2(M)

ε4

)
.
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Drawbacks

1. The protocol requires exponential-size quantum circuits acting

on multiple copies of ρ at a time.

2. Sample complexity scales with system size.

3. Observables have to be given beforehand.
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Classical Shadows [HKP20]

Classical shadows addresses all of these drawbacks.

1. The protocol is very simple and requires only single copies of

ρ at a time.

2. Sample complexity is independent of system size for broad

classes of observables.

3. One can prepare a classical representation of the unknown

quantum state, from which properties can be predicted.
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Classical Shadows Algorithm [HKP20]

1. Apply a random Clifford Ui to ρ.

2. Measure in the computational basis to obtain bi ∈ {0, 1}n.

3. This gives a classical snapshot:

ρ̂i = (2n + 1)U†i |bi 〉〈bi |Ui − I .

4. Repeating this, we obtain the classical shadow of ρ

SN(ρ) = {ρ̂1, . . . , ρ̂N}.
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Classical Shadows Algorithm [HKP20]

Given the classical shadow

SN(ρ) = {ρ̂1, . . . , ρ̂N},

one can predict expectation values via median-of-means.

1. Compute Zi , tr(Oρ̂i ) for all i = 1, . . . ,N.

2. Predict

ô = median

 1

N/K

N/K∑
i=1

Zi , . . . ,
1

N/K

N∑
i=N−N/K+1

Zi

 .
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Classical Shadows Guarantee

Theorem ([Huang, Kueng, Preskill, Nat. Phys. 2020])

Let O1, . . . ,OM be observables with tr
(
O2

i

)
≤ B for all i . Then,

we can estimate expectation values up to ε-error using

N = O
(
B logM

ε2

)
.

In general, the type of random measurement affects the algorithm,

class of observables, and sample complexity.

Another important example is to predicting local observables.
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Motivation

Can we design classical ML algorithms to solve difficult quantum

physics problems using classical shadows?

In particular, we focus on finding ground states.

Can classical ML efficiently predict ground states after learning

from training data?
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(Classical) Machine Learning

Goal: Want to learn some unknown function c : X → Y.

Given training data {(x`, y`)}N`=1, where x` ∼ D(X ) are sampled

from some distribution over X and y` = c(x`).

We want to learn a function h∗ that has low average prediction

error

E
x∼D(X )

|h∗(x)− c(x)|2 ≤ ε

with as little training data as possible.

The amount of training data N is called the sample complexity.
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Learning Ground State Properties

Let H be an n-qubit geometrically-local gapped Hamiltonian that

can be written as a sum of few-body interaction terms

H =
∑
j

hj .

Parameterize H by a vector x ∈ [−1, 1]m

H(x) =
∑
j

hj(x).

e.g., H(x) = x1Z1 + x2Z2.

Laura Lewis Classical ML for Quantum Problems 19 / 38



Learning Ground State Properties

Let H be an n-qubit geometrically-local gapped Hamiltonian that

can be written as a sum of few-body interaction terms

H =
∑
j

hj .

Parameterize H by a vector x ∈ [−1, 1]m

H(x) =
∑
j

hj(x).

e.g., H(x) = x1Z1 + x2Z2.

Laura Lewis Classical ML for Quantum Problems 19 / 38



Learning Ground State Properties

Let H be an n-qubit geometrically-local gapped Hamiltonian that

can be written as a sum of few-body interaction terms

H =
∑
j

hj .

Parameterize H by a vector x ∈ [−1, 1]m

H(x) =
∑
j

hj(x).

e.g., H(x) = x1Z1 + x2Z2.

Laura Lewis Classical ML for Quantum Problems 19 / 38



Learning Ground State Properties

Let H be an n-qubit geometrically-local gapped Hamiltonian that

can be written as a sum of few-body interaction terms

H =
∑
j

hj .

Parameterize H by a vector x ∈ [−1, 1]m

H(x) =
∑
j

hj(x).

e.g., H(x) = x1Z1 + x2Z2.

Laura Lewis Classical ML for Quantum Problems 19 / 38



Learning Ground State Properties

Let H be an n-qubit geometrically-local gapped Hamiltonian that

can be written as a sum of few-body interaction terms

H(x) =
∑
j

hj(x)

parameterized smoothly by x ∈ [−1, 1]m.

Let ρ(x) be the ground state of H(x).

Goal: Want to predict ground state properties tr(Oρ(x)), where O

is a sum of geometrically local observables with ‖O‖∞ ≤ 1.

Given training data {(x`, y`)}N`=1, where x` ∼ D([−1, 1]m) and

y` ≈ tr(Oρ(x)).
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Learning Ground State Properties

Goal: Want to predict ground state representations.

Given training data {(x`, y`)}N`=1, where x` ∼ D([−1, 1]m) and y`

approximates the ground state.

Can classical ML do this efficiently?
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Rigorous Guarantees

Theorem ([Huang et al. Science 2022]2)

There exists an efficient classical ML model g∗(x) that achieves

E
x∼U([−1,1]m)

|g∗(x)− tr(Oρ(x))|2 ≤ ε.

using N = nO(1/ε) training data.

Proposition (Computational Hardness)

Assuming RP 6= NP, then for 2D Hamiltonians, no randomized

classical algorithm predicting 1-body observables can achieve an

average prediction error ≤ 1/4 within poly(n,m) time.

2[Huang, Kueng, Torlai, Albert, Preskill, Science 2022]
Laura Lewis Classical ML for Quantum Problems 23 / 38
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Rigorous Guarantees

Key Additional Assumption:

H(x) =
∑
j

hj(~xj)

where each hj depends on a constant number of parameters ~xj .

Theorem ([Lewis et al. Nat. Commun. 2024]3)

There exists a classical ML model h∗(x) that achieves

E
x∼D([−1,1]m)

|h∗(x)− tr(Oρ(x))|2 ≤ ε

using N = log(n)2polylog(1/ε) training data sampled from an

arbitrary distribution.

3[Lewis, Huang, Tran, Lehner, Kueng, Preskill, Nat. Commun. 2024]
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Related Works

• [Wanner, Lewis, Bhattacharyya, Dubhashi, Gheorghiu,

NeurIPS 2024]: no system size dependence + neural network

guarantees

• [Onorati, Rouzé, Stilck França, Watson, Nat. Commun.

2024]: similar guarantee for learning Gibbs states with

exponentially decaying correlations

• [Onorati, Rouzé, Stilck França, Watson, arXiv:2311.07506

2024]: similar guarantee for learning Lindbladian phases of

matter with local rapid mixing
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Key Idea: Simple Form for Ground State Property

Theorem ([LHT+24])

The ground state property we wish to predict can be

approximated by a sum of smooth local functions:

tr(Oρ(x)) ≈ f (x).

Write O in the Pauli basis: O =
∑

P∈{I ,X ,Y ,Z}⊗n αPP.

It suffices to show that

tr(Pρ(x)) ≈ fP(x),

for fP a local function.
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Key Idea: Simple Form for Ground State Property

Write O in the Pauli basis: O =
∑

P∈{I ,X ,Y ,Z}⊗n αPP.

For each Pauli P, we define a map χP(x) that sets parameters in x

that are “far from P” set to 0.
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Key Idea: Simple Form for Ground State Property

Lemma

tr(Pρ(x)) ≈ fP(x) = tr(Pρ(χP(x)))

In other words, only parameters “close to P” affect the ground

state property.
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Algorithm of [LHT+24]

So we get

tr(Oρ(x)) ≈ f (x) =
∑
P

αP fP(x).

In fact, [LHT+24] shows that

tr(Oρ(x)) ≈ w ′ · φ(x).

Algorithm:

1. Apply feature mapping φ.

2. Learn h∗(x) = w∗ · φ(x) using `1-regularized regression

(LASSO) over the feature space.
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Numerical Experiments [LHT+24]

Spins placed on a 2D lattice with Hamiltonian

H =
∑
〈ij〉

Jij(XiXj + YiYj + ZiZj).

The parameter vector is x = {Jij}.

We want to predict two-body correlation functions, i.e., the

expectation value of

Cij =
1

3
(XiXj + YiYj + ZiZj).
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Summary

We’ve discussed how classical ML algorithms can predict ground

state properties using very little data.

This raises the hope that ML algorithms can address practical

problems by learning from the small amount of data available from

physical experiments.
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Open Questions

• Can quantum ML algorithms predict ground state properties

even better?

• Can ML learn to predict other physical properties (e.g.,

low-energy excited state properties)?

Laura Lewis Classical ML for Quantum Problems 38 / 38



Open Questions

• Can quantum ML algorithms predict ground state properties

even better?

• Can ML learn to predict other physical properties (e.g.,

low-energy excited state properties)?

Laura Lewis Classical ML for Quantum Problems 38 / 38


	Classical Shadows
	Classical ML for Ground States
	Proof Ideas

