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1. Early fault-tolerant algorithms for GSEE: review of the 
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2. Applying the Lin&Tong algorithm in practice.

3. Numerical simulations.

4. Bonus: application on NISQ devices.
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// Early-FTQC Algorithms for GSEE

Find the lowest eigenvalue of a Hamiltonian H describing a system with some error 𝜖,

An Early-FTQC algorithm solving this problem should have following nice features: 

1. It uses limited (ideally one) or constant ancilla qubits.

2. The circuit depth is short, ideally O(𝜖-1) (Heisenberg scaling).

3. Some degree of robustness against algorithmic errors.
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// Extinguishing the fire

Initial State Preparation: improve from the best you can do classicaly: DMRG, Coupled Cluster, … 
Unknown Overlap: finding the inflection point (above the empirical noise) and looking at the accumulation 
over the low energy sector. 

Hamiltonian Simulation: system-specific; we use (asymptotical sub-optimal) product formula because: 

1. no ancilla overhead
2. take advantage of locality
3. often much better than what is guaranteed
4. can scale better than qubitization in some regime 

Accumulation:
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// Our Workflow

CPUQPUInput

Hamiltonian 𝓗 Precision δResolution η

Initial State Preparation       .
(DMRG, Coupled Cluster, ASP, or VQE)

Fourier Coefficients - Fj

Construct the 

ACDF

Sample time indices

Circuits for state prep 

and time evolution

Finding the inflection point

Search using 

Ruptures

Validate using 

ANOVA

Improve guess Ẽ0 -

Compute the point 

with the largest

peak of the gradient 

within a δ-window 

around the inflection 

point

Output

Estimated Ground 

State Energy Ẽ0

Zoom-in

Compute 

Fourier

Moments

Perform

Hamiltonian 

Simulation
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// Key Insights I: Find Inflection

CDF smoothes out with the system size (random 

initial state)
Search a 

breakpoint

Validate the 

breakpoint

Improve the 

breakpoint

Use ANOVA to test the statistical significance using F-test 

Go towards the middle of the jump from the beginning

Celisse et al, arXiv:1710.04556

XXZ model
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// Key Insights II: Quantitative Resources

For a given maximal runtime D O(δ−1 log δ−1η−1 ) 1 and 

accuracy ϵ, the number of samples M required to 

guarantee the correct result with probability 1 − ϑ is

1. Wan, Berta and Campbell, Phys. Rev. Lett. 129,030503

To resolve bad initial states, we require 
more depth (and not only samples).
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// Numerical Simulations

We consider a fully-connected Heisenberg model with random couplings over N spins

Why? : universal, long-range, challenging for DMRG.

For dynamics, we use a second-order Trotter-Suzuki with time step ∆t = τ/8. 

The circuit construction is based on SWAP networks.

We look at N=26 spins, 

and use initial states prepared via DMRG (with low bond dimension).

Cubitt, Montanaro, and Piddock, Universal quantum Hamiltonians, 115 (38) 9497-9502 
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// Key Insights III: DMRG(bd = 10) Initial State

𝑝0 = 7𝑥 10−6 (overlap)
𝑀 = 1013 samples

Depth matters most!

5% improvment



Copyright © 2024 Xanadu Quantum Technologies Inc.

// Key Insights III: Sparsified DMRG



Copyright © 2024 Xanadu Quantum Technologies Inc.

// Key Insights III: Sparsified DMRG
30% improvment



Copyright © 2024 Xanadu Quantum Technologies Inc.

// Key Insights III: Sparsified DMRG
30% improvment



Copyright © 2024 Xanadu Quantum Technologies Inc.

// Key Insights III: Sparsified DMRG
30% improvment

Fidelity with 
initial state 
p0=2x10-5
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// To Conclude

1. LT algorithm (and friends) bridges the gap between the NISQ and FTQC eras.

2. Instead of aiming at the true ground-state energy, one can concentrate on a finding 

the inflection point of the spectral CDF.

3. LT algorithms are able to improve on classical solutions,

using only limited quantum resources (~105 samples).

4. If arbitrary precision is required, use quantum phase estimation. However, If a good 

approximation is enough,  LT is a robust algorithm, which can be run in practice.
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// Bonus: what can we do on NISQ? 

● Blunt et al: variational dynamics + ZNE on a H3 molecule (6 qubits).
● We focus on extracting Fourier moments of a    nuclear EFT (4 

qubits).

● We use purified echo verification + various error suppresion 

techniques (twirling, dynamical decoupling, pulse efficient 

calibration, readout calibration).

Blunt et al, PRX Quantum 4, 040341 (2023)
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Pure main component

Noisy components

Without noise: the ancilla is pure after post-

selection.

With noise: It is not. Extract the closest pure state 

from measurements.

Unprepare the state and verify that it is the zero state

// Purified echo verification

Verification Purification of the ancilla

O’Brien, et al., PRX Quantum 2, 020317 (2021), 

Verification passed -> state contributes +/- 1 to the 
expectation value.

Otherwise:  ->  garbage
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Purity of the ancilla

// Results (IBMQ)

x100  error reduction
We know the 
breakpoint

Kiss et al , arXiv:2401.13048
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Hadamard test 

Initial state

We only care about 𝜶, so we can 
disregard any orthogonal states!

1. We measure the 3 single-qubit Pauli 
expectation (X,Y and Z) values of the ancilla.

2. Construct the closest compatible pure 
state (purification + tomography).  

// Purified echo verification (details)
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// Sparse interpolation via compressive sensing

● Compressive sensing is an optimal technique to recover a signal from few 

measurements if we know a basis where the signal is sparse. 

d = number of moments
S = number of non-zero components 
(sparsity)
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// Numerics

DMRG initial state

1. Not good if used with 
importance sampling. 

2. Does not work for 
extrapolation

3. Always good if you need 
the whole signal (even 
with shot noise). 
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