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1. Quantum correlations and 
Models of entanglement. 
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Correlation set
• Mathematical model design to describe a physics experiment between two separated 

players. 

• Correlations: The joint probability distributions of output between the two parties (given the 
input). 𝑃(𝑎, 𝑏|𝑥, 𝑦).

• Represented as vectors in 0,1 ! × ! × # ×|#|

𝐱 ∈ 𝐗 𝐲 ∈ 𝐗

𝐚 ∈ 𝑨 𝐛 ∈ 𝑨
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Quantum tensor correlations

• P 𝑎, 𝑏 𝑥, 𝑦 is	a	quantum	tensor correlation if P 𝑎, 𝑏 𝑥, 𝑦 = 𝜓 𝐴%&⊗𝐵'
( 𝜓 .

• 𝐶) 𝑋, 𝐴 : Set of quantum tensor correlations (subset of 0,1 ! × ! × # ×|#|).

𝐱 ∈ 𝐗 𝐲 ∈ 𝐗

𝐚 ∈ 𝐀 𝐛 ∈ 𝐀

𝐀𝐚𝐱 𝑩𝐛
𝐲

𝑯𝑨 𝑯𝑩

𝝍 ∈ 𝑯𝑨⊗𝑯𝑩
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Quantum commuting correlations

• P 𝑎, 𝑏 𝑥, 𝑦 is	a	quantum	commuting correlation	if P 𝑎, 𝑏 𝑥, 𝑦 = 𝜓 𝐴%&𝐵'
( 𝜓 .

• 𝐶), 𝑋, 𝐴 : Set of quantum commuting correlations. 

• 𝐶) 𝑋, 𝐴 ⊆ 𝐶),(𝑋, 𝐴) [MIP*=RE theorem], important implications for operator algebra, 
complexity/algorithm and physics. 

𝐱 ∈ 𝐗 𝐲 ∈ 𝐗

𝐚 ∈ 𝐀 𝐛 ∈ 𝐀

𝐀𝐚𝐱 𝑩𝐛
𝐲

𝝍 ∈ 𝑯
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𝒚] = 𝟎



Correlations

• Two parties in a different lab: quantum	tensor correlation.
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Correlations

• Different space: quantum	tensor correlation.
• However,	if	the	two	parties	are	operating	in	the	same	system	in	the	same	space,	the	
model	in	principle	be	in	quantum	commuting correlation	(Tsirelson’s problem).

• The	different	models	of	entanglement	can	be	tested	in	theory	similar	to	a	bell	test	
(with	estimated	~10!" questions and answer pairs). 

8



Quantum strategies

• 𝑃 𝑎, 𝑏 𝑥, 𝑦) ∈ 𝐶!" 𝑋, 𝐴

• POVMs {𝐴#$}, {𝐵%
&}, and state 𝜓 is a quantum strategy for 𝑃 if

𝑃 𝑎, 𝑏 𝑥, 𝑦 = ψ 𝐴TU𝐵V
W 𝜓

• Strategy	describes	the	behavior	of	the	experimentors ,	correlation	
describes	what	the	observer	sees!
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• Many quantum correlations have interesting theories behind 
strategies that achieve correlations that are close to the 
given correlations. 
• Robust self-testing (CHSH, tilted CHSH, Magic square).
• Quantum soundness (Tensor code test).

• However, they are proven mostly in the tensor product 
model.
• Since the commuting operator model only differs in the 

infinite-dimensional case. These theorems are often hard 
to generalize.
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Simple finite dimensional things that we enjoy

• The Hilbert Schmidt norm: 𝑋 ' =
(
)𝑇𝑟 𝑋

• The reduced density matrix: 𝑇𝑟*!(|𝜓⟩⟨ψ|) = 𝜎
• Observable switching trick: 𝜎 ⊗ 𝐼 Φ = 𝐼 ⊗ 𝜎+ Φ

• Many of these simple things are not realizable in the infinite-
dimensional case in general!
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2. Tracial embeddable strategies
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Tracial embeddable strategies

• A class of commuting operator strategies with many of the
“nice” properties from finite-dimensional strategies.
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Tracial embeddable strategies
• A commuting operator strategy {𝐴#$}, {𝐵%

&} ⊆ 𝐵(𝐻), 𝜓 ∈ 𝐻 is a tracial
embeddable strategy if there exist a tracial von Neumann algebra 𝐴,Φ in 
standard form on the Hilbert space 
• 𝜓 = 𝜎|Φ⟩ for some positive element σ ∈ 𝐴
• {𝐴#$} ∈ 𝐴
• {𝐵%

&} ∈ 𝐴, , the commutant of 𝐴
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Finite dimension example:  
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• For 𝑃 𝑎, 𝑏 𝑥, 𝑦 ∈ 𝐶! 𝑋, 𝐴



Finite dimension example:  
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• For 𝑃 𝑎, 𝑏 𝑥, 𝑦 ∈ 𝐶! 𝑋, 𝐴

𝜓 = 𝜎|Φ⟩

• This can always be achieved by enlarging one of the Hilbert spaces!



Main theorem
• We show that 

𝐶!"#$ 𝑋, 𝐴 = 𝐶!"(𝑋, 𝐴)

• 𝐶!"+- 𝐺 - set of correlations generated by tracial embeddable strategies. 
• This means that we can always assume this class of “nice” strategies if we do 

not require exact correlations when it comes to commuting operator 
correlations.
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Proof of the main theorem
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Proof of the main theorem
Idea: embedding a general von Neumann algebra into a tracial von Neumann 
algebra of the standard form + approximation of normal state. 

• Main proof technique: 
• Connes-Tomita-Takesaki theorem (𝐼𝐼1) 
• Generalization to Choi’s proof that  𝐶∗(𝐹3) is RFD (𝐼𝐼4).

• Approximation mainly comes from getting the underlying state to be normal + 
approximable by a positive element.
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3. Applications
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Main theme

• Tracial embeddable strategies have the structures of finite-dimensional 
tensor product strategies, many of the proof techniques can be lifted!
• Any property which does not require exact correlations for tracial

embeddable strategies would hold for commuting operator correlations.
• This gives a framework to lift many theorems from finite-dimensional tensor 

product cases to the commuting operator correlations.
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Nonlocal games
• G	=	(µ, D)	is	a	two-player	nonlocal	game	with	question	set	𝑄 and	answer	set	𝐴,	where

• µ distribution	over	𝑄×𝑄 (Question	distribution)

• D:	𝑄×𝑄×𝐴×𝐴 → {0,1} (Decision	predicate)

• The	referee	samples	 𝑥, 𝑦 ∼ µ.	Sends	x	to	
Alice	and	y	to	Bob.

• Without	communicate	with	each	other	
Alice	responds	with	a,	and	Bob	with	b.

• Players	win	if	𝐷 𝑥, 𝑦, 𝑎, 𝑏 = 1.
• The	players	can	potentially	employ	some	
quantum	correlations	(tensor,	
commuting),	which	can	help	them	win	the	
game	more	(Example:	CHSH).

𝑥, 𝑦 ∼ µ.

yx

a b𝐷(𝑥, 𝑦, 𝑎, 𝑏)



Approximating nonlocal games
• If	I	give	you	G	=	(µ, D),	how	difficult	is	it	to	approximate	the	optimal	success	
rate	for	a	game	(up	to	0.5)?
• (Quantum	tensor)	This		problem	is	known	to	be	equivalent	to	the	halting	
problem	[MIP∗ = RE],	due	to	the	connection	with	computer	science.



Interactive proof system

• Nonlocal games are known as a Multiplayer Interactive Proof system (MIP) in the computer science language.
• MIP∗: MIP, but the prover gets access to tensor product correlations.
• This model is equivalent to solving the halting problem (Impossible!).
• This theorem is proven using tools from both the CS community and the quantum information community.
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MIP*=RE



Approximating nonlocal games
• If	I	give	you	G	=	(µ, D).	How	difficult	is	it	to	approximate	the	optimal	success	
rate	for	a	game	(up	to	0.5)?
• (Quantum	tensor	strategies)	This		problem	is	known	to	be	equivalent	to	the	
halting	problem	[MIP∗ = RE],	due	to	the	connection	with	computer	science.

• (Quantum	Commuting strategies)	Unknown!



The complexity of MIP%&

• The complexity of approximating the optimal success rate under the commuting 
operator model for a game. Conjectured to be equivalent to the non-halting problem. 

• Problem:	Most	of	the	theorems	from	Quantum	information	do	not	generalize	in	the	
Quantum	Commuting	model!
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The complexity of MIP%&

• Due to the main theorem, this is equivalent to approximating the optimal 
success rate over tracial embeddable strategies. 
• Using tracial embeddable strategies, many of the techniques MIP∗ can be 

moved to the commuting operator model. 
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Rounding 
• A correlation is synchronous if the output is the same when given the same input

𝐱 𝐱

𝐚 𝐚
𝑃 𝑎, 𝑎 𝑥, 𝑥 = 1

• Well-studied correlations [KPS17, HMP16+]
• Key part of the MIP∗ = RE theorem. 
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Rounding
• A correlation is 𝜹-almost synchronous if the output is the same most of the 

time when given the same input
𝐱 𝒙

𝐚 𝑎

𝑃 𝑎, 𝑎 𝑥, 𝑥 ≥ 𝟏 − 𝜹

• Rounding: Can all 𝜹-almost synchronous correlation be approximated by 
synchronous correlation?

31



Rounding – Our result

• [Vid21, Pau21]: True in the tensor product case (Proof relies on the trace).
• We show the rounding theorem in the commuting operator case.
• By assuming the underlying strategy is tracial embeddable, we can repeat 

[Vid21]’s argument in the commuting operator model. 
• Rounding + [JNV+22b]: Quantum low-degree is sound in the commuting 

operator model of entanglement. 
• Combining this with [BFL91] this implies that MIP = NEXP ⊆ MIP56.
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Robust self-test

• Self-testing (tensor): Correlations with unique strategy (up to local isometry). 
• Self-testing (CO): Correlations realizable by a unique state on 𝐶>?⊗@#$ 𝐶>?

• Robust self-testing (tensor): All approximate strategies are close (in || ⋅ ||') to 
the unique strategy.
• Robust self-testing (CO): Unclear! 
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Robust self-test – Our result
• We prove robust self-testing for tracial embeddable strategies for a version of the Pauli-basis test
• The proof relies on the state-dependent Gowers-Hatami theorem (tracial embeddable strategies). 
• Our rigidity statement (roughly) looks like this:

If A#$ , 𝐵A
& , 𝜓 is a tracial embeddable strategy which succeed at the 

Pauli basis test with probability 1 − 𝜖, then there exist two partial 
isometry 𝑉>, 𝑉A such that 𝑉> 𝑉A⊗ 𝐼 = 𝑉A(𝑉>⊗ 𝐼) and

||𝑉A(𝑉>⊗ 𝐼) 𝜓 − 𝐴𝑢𝑥 𝐸𝑃𝑅 ⊗)||' ≤ 𝑂(𝑝𝑜𝑙𝑦(𝜖))

𝑽𝑨⊗𝑽𝑩
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Other applications – NPA Hierarchy. 
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• An algorithm design to upper bound the commuting operator model of 
entanglement. 



Other applications – NPA Hierarchy. 

36

• By using tracial embeddable strategies, one can incorporate states involving 
density matrix into the gram matrix within the NPA Hierarchy. 
• Example: 𝜏 𝜎 𝐴'& 𝐵'

(𝜎 𝜏 = τ B7
8𝜎9A7

: 𝜏 ( 𝜏 is the tracial vector state!)

• This gives a variant of the NPA Hierarchy which gives more variables 
(potentially faster convergence??).



Thank you for your attention.
• Tracial embeddable strategies are a class of 

commuting operator strategies with many 
similar properties to a finite-dimensional 
tensor product strategy.
• Tracial embeddable strategies generate a set of 

correlations that are dense in the commuting 
operator strategies.
• Using the above two statements, we created a 

framework to lift theorems from the tensor 
product model to the commuting operator
model.
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