Efficient cross-platform verification

Marcel Hinsche, *Freie Universität Berlin*

based on arXiv:2405.06544

My collaborators

Marios Ioannou Sofiene Jerbi Lorenzo Leone Jens Eisert Jose Carrasco

The many platforms of quantum computing

- **Trapped ions**
- **Neutral atoms**
- Superconducting qubits
- **Photons**

● …

The need for comparing platforms

• Benchmarking performance

● Detecting hardware specific features

● Validation of results

Alice (Berlin) Bob (Paris)

Inner product estimation

Distributed inner product estimation

Previous work

- Elben et al, PRL 2020
	- First protocol for *cross-platform verification*

- Zhu et al, Nat. Com. 2022
	- Small-scale experimental implementation across different platforms (up to $n=13$)

Previous work

- Elben et al, PRL 2020
	- First protocol for *cross-platform verification*

- Zhu et al, Nat. Com. 2022
	- Small-scale experimental implementation across different platforms (up to $n=13$)
- Anshu, Landau, and Liu, STOC 2022
	- \circ Rigorous theoretical lower bound $\Omega(2^{n/2})$ on sample complexity (better than tomography, but still exponential)

Cross-platform verification ● is cool, relevant ● but scales **exponentially**

Cross-platform verification ● is cool, relevant ● but scales **exponentially** *without any assumptions*

Our starting point

Question: Which assumptions on ρ , σ allow for an *efficient* approach?

Design principles

1. **Coordination**:

Alice and Bob should *coordinate* which bases they measure in.

Design principles

1. **Coordination**:

Alice and Bob should *coordinate* which bases they measure in.

2. **Tailoring**:

Alice and Bob should use prior knowledge to *tailor* the choice of measurement basis to their respective state.

Alice (Berlin) Bob (Paris)

How to choose the Paulis *? There are* exponentially many to choose from…

Importance sampling according to the *Pauli distribution*:

$$
p_\rho(P) = \tfrac{1}{2^n} \tfrac{\text{tr}(\rho P)^2}{\text{tr}(\rho^2)}
$$

We call this *Pauli sampling*.

Connection to magic and entanglement

Pauli distribution:

$$
p_\rho(P) = \tfrac{1}{2^n} \tfrac{\text{tr}(\rho P)^2}{\text{tr}(\rho^2)}
$$

- Magic \cong entropy of p_{ρ}
	- *Stabilizer entropies* (Leone, Oliviero, Hamma '21)

Connection to magic and entanglement

Pauli distribution:

$$
p_\rho(P) = \tfrac{1}{2^n} \tfrac{\text{tr}(\rho P)^2}{\text{tr}(\rho^2)}
$$

- Magic \cong entropy of p_{ρ}
	- *Stabilizer entropies* (Leone, Oliviero, Hamma '21)
- Entanglement ≅ marginals of p_{ρ}

Complexity

Q: Which assumptions on ρ , σ allow for an efficient approach?

A: Low magic and entanglement.

Summary

1. Cross-platform verification is a **distributed** benchmarking task.

- 2. We proposed and analyzed a novel protocol for this task based on coordinated Pauli measurements.
	- a. it is efficient under certain additional assumptions

Pauli sampling

Goal: Sample from the *Pauli distribution*

$$
p_\rho(P) = \tfrac{1}{2^n} \tfrac{\text{tr}(\rho P)^2}{\text{tr}(\rho^2)}
$$

Our approach: the qubit-by-qubit algorithm

$$
P_1 \rightarrow P_2 \rightarrow \cdots \rightarrow P_n
$$

$$
p_\rho(P) = p_\rho(P_1)p_\rho(P_2|P_1)\cdots p_\rho(P_n|P_1,\ldots,P_{n-1})
$$