

Assessing Nuclear Spin Registers Coupled to Defects for Quantum Memories

Filippos Dakis

Economou & Barnes Groups

Contents

- Introduction
- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Contents

Introduction

- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Memory-based repeaters

Memory-based repeaters

Quantum internet

Create and distribute entanglement Control with high precision/fast the nodes of the network (gates)

Seminal Experiments

T. H. Taminiau et al, *Nat. Nanotechnol.* **9**, 171 (2014)

Seminal Experiments

T. H. Taminiau et al, *Nat. Nanotechnol.* **9**, 171 (2014)

S. L. N. Hermans et al, Nature 605, 663 (2022)

SiV:

SiC divacancy:

A. Bourassa et al, Nat. Mater. 19, 1319 (2020)

C.T. Nguyen et al, *Phys. Rev. Lett.* **123**, 183602 (2019)

Contents

Introduction

- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Single spin coupled to defect

Hamiltonian for a nuclear spin (e.g., ¹³C) coupled to an electronic qubit (e.g., NV center)

$$H = |0\rangle \langle 0| \otimes \overset{\uparrow}{\omega_{\mathrm{L}}} I_{z} + |1\rangle \langle 1| \otimes \left[(\omega_{\mathrm{L}} - A_{||}) I_{z} - A_{\perp} I_{x} \right]$$

$$H = |0\rangle \langle 0| \otimes H + |1\rangle \langle 1| \otimes H$$
Hyperfine Interactions

 $\Rightarrow \quad H = |0\rangle \langle 0| \otimes H_0 + |1\rangle \langle 1| \otimes H_1$

The nuclear spin experiences a different Hamiltonian conditional to the state of the electronic spin!

$$U = |0\rangle \langle 0| \otimes R_{n_0}(\phi_0) + |1\rangle \langle 1| \otimes R_{n_1}(\phi_1)$$

$$(\phi_1) = \sum_{\substack{2x2 \text{ nuclear spin} \\ \text{Rotation matrix}}} \sum_{\substack{2x2 \text{ nuclear spin} \\ \text{Rotation matrix}}}} \sum_{\substack{2x2 \text{ nuclear spin} \\ \text{Rotation matrix}}} \sum_{\substack{2x2 \text{ nuclear spin} \\ \text{Rotation matrix}}}} \sum_{x2 \text{ nuclear spin} \\ \text{Rotation matrix}}} \sum_{x2 \text{ nuclear spin} \\ \text{Rotation matrix}}} \sum_{x2 \text{ nuclear spin} \\ \text{Rotation matrix}}} \sum_{x2 \text{ nuclear spin} \\ \text{Rotation matrix}} \sum_{x2 \text{ nuclear spin} \\ \text{Rotation mat$$

$$U = |0\rangle \langle 0| \otimes R_{n_0}(\phi_0) + |1\rangle \langle 1| \otimes R_{n_1}(\phi_1)$$

$$\phi_0 = -\phi_1 = \pi/2$$
 $\mathbf{n}_0 = \mathbf{n}_1 = \mathbf{x}$

$$U = \sigma_{00} \otimes \mathcal{R}_x(\pi/2) + \sigma_{11} \otimes \mathcal{R}_x(-\pi/2) = \frac{\mathcal{C}\mathcal{R}_x(\pi/2)}{\mathcal{C}\mathcal{R}_x(\pi/2)}$$

$\operatorname{CR}_x(\pi/2) |+0\rangle = |0\rangle |-\rangle + |1\rangle |+\rangle$

 $\frac{\operatorname{CR}_x(\pi/2) \sim \operatorname{CNOT}}{= \sigma_{00} \otimes \mathbb{1} + \sigma_{11} \otimes X}$

$$U = |0\rangle \langle 0| \otimes R_{n_0}(\phi_0) + |1\rangle \langle 1| \otimes R_{n_1}(\phi_1)$$

$$\phi_0 = \phi_1 = \pi/2 \qquad \mathbf{n}_0 = -\mathbf{n}_1 = \mathbf{x}$$

$$U = \sigma_{00} \otimes \mathcal{R}_x(\pi/2) + \sigma_{11} \otimes \mathcal{R}_{-x}(\pi/2) = \frac{\mathcal{C}\mathcal{R}_x(\pi/2)}{\mathcal{C}\mathcal{R}_x(\pi/2)}$$

$\operatorname{CR}_x(\pi/2) |+0\rangle = |0\rangle |-\rangle + |1\rangle |+\rangle$

 $\frac{\operatorname{CR}_x(\pi/2) \sim \operatorname{CNOT}}{= \sigma_{00} \otimes \mathbb{1} + \sigma_{11} \otimes X}$

Contents

- Introduction
- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Controlling nuclear spins selectively

What happens when there are many nuclear spins?

Challenges:

- All nuclei are always coupled to defect (crosstalk)
- Experimental constraint: only defect drive available

Potential:

- Large entangled states (q. info, metrology, etc)
- Exploit large coherence times of nuclear spins
- High-fidelity quantum gates

Dynamical Decoupling pulses

Suppress the decoherence caused by the (unwanted) nuclear spins

 2τ

τ

Dynamical Decoupling pulses

Suppress the decoherence caused by the (unwanted) nuclear spins

- ➢ CPMG
- ≻ UDD-n
- ≻ XY-n

Also enhance interactions with specific nuclei (registers)

Control knobs:

- Unit time au_k
- Iterations N

Spin distinguishabity

• Unit time au_k

•

Iterations N $U = \sigma_{00} \otimes R_x(\pi/2) + \sigma_{11} \otimes R_x(-\pi/2) = CR_x(\pi/2)$

17

Defect coupled to many nuclear spins

$$H = \sum_{j=0}^{1} \sigma_{jj} \otimes \left(H_{j}^{(1)} \otimes \mathbb{1}_{2^{L-1}} + \mathbb{1} \otimes H_{j}^{(2)} \otimes \mathbb{1}_{2^{L-2}} + \dots + \mathbb{1}_{2^{L-1}} \otimes H_{j}^{(L)} \right)$$

* Neglect nuclear-nuclear interactions Weaker than electron-nuclear interactions

Multi-qubit evolution operator

$$U = \sigma_{00} \otimes_{l=1}^{L} R_{\mathbf{n}_{0}}^{(l)} (\phi_{0}^{(l)}) + \sigma_{11} \otimes_{l=1}^{L} R_{\mathbf{n}_{1}}^{(l)} (\phi_{1}^{(l)})$$
Rotation of lth spin

E. Takou, E. Barnes and S. E. Economou, *Phys. Rev. X* 13, 011004 (2023)

One-tangles

Calculate correlations between single nuclear spin & remaining system ($\epsilon_{
m rest} \|i^{
m th} \, {
m spin}$)

• Shown that the one-tangle for the ith spin is

$$\epsilon_{\text{rest}\parallel i^{\text{th}} \text{ spin}} = 1 - G_1^{(i)}$$

- Reliable metric of nuclear spin selectivity
 - $\epsilon = 1$ Spin is maximally entangled with de the defect
 - $\epsilon=0$ Spin is completely decoupled

* Perfect entangling gates

 $(G_1, G_2) = (0, 1)$

T. Linowski et al. *Journal of Physics A* **53**, 125303 (2020) E. Takou, E. Barnes and S. E. Economou, *Phys. Rev. X* **13**, 011004 (2023)

Quantifying entanglement

For any π -pulse sequence

$$G_1 = \left(\cos\frac{\phi_0}{2}\cos\frac{\phi_1}{2} + \mathbf{n}_0 \cdot \mathbf{n}_1\sin\frac{\phi_0}{2}\sin\frac{\phi_1}{2}\right)^2$$

$$G_2 = 1 + \mathbf{n}_0 \cdot \mathbf{n}_1 \sin \phi_0 \sin \phi_1 + 2 \left(\cos^2 \frac{\phi_0}{2} \cos^2 \frac{\phi_1}{2} + (\mathbf{n}_0 \cdot \mathbf{n}_1)^2 \sin^2 \frac{\phi_0}{2} \sin^2 \frac{\phi_1}{2} \right)$$

Makhlin invariants (G_1, G_2) encode the non-local part of the gate:

- Depend on nuclear rotation axes & angles
- Directly optimize the gate

* Perfect entangling gates

	Identity	CNOT	SWAP	$\sqrt{\text{SWAP}}$
G_1	1	0	$-1 \\ -3$	<i>i</i> /4
G_2	3	1		0

Makhlin, QIP **1**, 243-252 (2002) E. Takou, E. Barnes and S. E. Economou, *Phys. Rev. X* **13**, 011004 (2023)

Multipartite entanglement

$$U = \sum_{j \in \{0,1\}} \sigma_{jj} \bigotimes_{k=1}^{K} R_{\mathbf{n}_{j}^{(k)}} \left(\phi_{j}^{k}\right) \bigotimes_{l=1}^{L-K} R_{\mathbf{n}_{j}^{(K+l)}} \left(\phi_{j}^{(K+l)}\right)$$

Gate:

Target gate:

$$U_0 = \sum_{j \in \{0,1\}} \sigma_{jj} \otimes_{k=1}^K R_{\mathbf{n}_j^{(k)}} \left(\phi_j^k\right)$$

Kraus Operators

$$E_{i} = \sum_{j=0,1} c_{j}^{(i)} p_{j}^{(i)} \sigma_{jj} \otimes_{k=1}^{K} R_{\boldsymbol{n}_{j}^{(k)}}(\phi_{j}^{(k)})$$

Fidelity:

$$F = \frac{1}{m(m+1)} \sum_{k} \operatorname{Tr} \left[(U_0^{\dagger} E_k)^{\dagger} U_0^{\dagger} E_k \right] + \left| \operatorname{Tr} \left[U_0^{\dagger} E_k \right] \right|^2$$

Multipartite entanglement with single shot operation

Chose N^* and τ such that:

- ϵ_p is maximized for selected spins
- ϵ_p is minimized for unwanted spins
- Short gate time $N^* \tau = T_g < T_2^*$

Example

Questions we want to answer

- What DD sequences perform best for various cases?
- How does Fidelity deteriorate with increasing register and bath sizes?
- What are the protocols for achieving entangling states for (realistic) SiC defects?

Help experimental physicists conduct experiments!

Contents

- Introduction
- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Flys. Rev. Applied, to appear

Monovacancy in SiC

Defect: **S** = 3/2Nuclear spins: ¹³C, ²⁹Si Proportion of spins: ²⁹Si/¹³C = 4.27 Gyromagnetic ratio: $\gamma_C > 0$, $\gamma_{Si} < 0$

²⁹Si

Bath $(N_{\rm B})$

6

5

-7.91

2

3

4

7

8

F. Dakis et al. arxiv.org/abs/2405.10778, Phys. Rev. Applied, to appear

●¹³C

¹³C

Average over

200 realizations

9

10

Defect: **S** = 3/2Nuclear spins: ¹³C, ²⁹Si Proportion of spins: ²⁹Si/¹³C = 4.27Gyromagnetic ratio: $\gamma_C > 0$, $\gamma_{Si} < 0$

Average over 200 realizations

Bath $(N_{\rm B})$

Defect: **S** = 3/2Nuclear spins: ¹³C, ²⁹Si Proportion of spins: ²⁹Si/¹³C = 4.27Gyromagnetic ratio: $\gamma_C > 0$, $\gamma_{Si} < 0$

Average over 200 realizations

 $\log_{10}(\overline{1-F})$

	< - 4.	0.	-3.5	-3.() -2	2.5	-2.0	-1	.5	-1.0	-0.5
			I	I		1					
	10										
	9										
	8										
$V_{\rm R}$)	7										
\sim	6										
gister	5										
Reg	4										
	3										
	2										
	1	-7.91	-5.84	-5.14	-4.58	-4.32	-4.20	-4.03	-3.85	-3.79	-3.80
		1	2	3	4	5	6	7	8	9	10

Bath $(N_{\rm B})$

Defect: **S** = 3/2Nuclear spins: ¹³C, ²⁹Si Proportion of spins: ²⁹Si/¹³C = 4.27Gyromagnetic ratio: $\gamma_C > 0$, $\gamma_{Si} < 0$

- Random realizations of n-spin positions and <u>register vs bath</u> assignment and calculated the fidelity (purity) of the gates; averaged over realizations
- Use to guide experiments/assess viability

Average over 200 realizations

					1	og_(<u>1-</u> <i>F</i>)				
	< -4.0 -3		-3.5 -3.0) -2	-2.5		-2.0 -1.		.5 -1.0		
			·			·						
	10	-1.40	-1.35									
	9	-1.91	-1.55									
	8	-2.10										
$V_{\rm R}$)	7	-2.75										
	6	-3.44	-2.67									
giste	5	-4.03	-2.88									
Re	4	-4.55	-3.44									
	3	-5.75	-4.15									
	2	-6.89	-4.87									
	1	-7.91	-5.84	-5.14	-4.58	-4.32	-4.20	-4.03	-3.85	-3.79	-3.80	
		1	2	3	4	5	6	7	8	9	10	

Bath $(N_{\rm B})$

Defect: **S** = 3/2Nuclear spins: ¹³C, ²⁹Si Proportion of spins: ²⁹Si/¹³C = 4.27 Gyromagnetic ratio: $\gamma_C > 0$, $\gamma_{Si} < 0$

- Random realizations of n-spin positions and <u>register vs bath</u> assignment and calculated the fidelity (purity) of the gates; averaged over realizations
- Use to guide experiments/assess viability

Average over 200 realizations

					1	og_(1 - <i>F</i>)			
	< - 4.	0 .	-3.5	-3.() -2	2.5	-2.0	-1	.5	-1.0	-0.5
			·	·							
	10	-1.40	-1.35	-1.29	-1.21	-1.19	-1.12	-1.06	-1.00	-0.97	-0.93
	9	-1.91	-1.55	-1.55	-1.44	-1.34	-1.24	-1.18	-1.10	-1.02	-1.03
	8	-2.10	-1.97	-1.79	-1.59	-1.54	-1.35	-1.23	-1.19	-1.12	-1.11
'R)	7	-2.75	-2.30	-1.96	-1.80	-1.62	-1.46	-1.38	-1.26	-1.22	-1.16
	6	-3.44	-2.67	-2.24	-2.00	-1.75	-1.64	-1.50	-1.45	-1.36	-1.27
In let	5	-4.03	-2.88	-2.52	-2.20	-1.98	-1.81	-1.74	-1.59	-1.47	-1.44
3	4	-4.55	-3.44	-2.90	-2.53	-2.32	-2.08	-1.93	-1.80	-1.65	-1.55
	3	-5.75	-4.15	-3.40	-2.94	-2.63	-2.34	-2.17	-2.06	-1.91	-1.75
	2	-6.89	-4.87	-3.98	-3.41	-3.06	-2.80	-2.72	-2.61	-2.57	-2.41
	1	-7.91	-5.84	-5.14	-4.58	-4.32	-4.20	-4.03	-3.85	-3.79	-3.80
		1	2	3	4	5	6	7	8	9	10

Bath $(N_{\rm B})$

Defect: **S** = 3/2Nuclear spins: ¹³C, ²⁹Si Proportion of spins: ²⁹Si/¹³C = 4.27 Gyromagnetic ratio: $\gamma_C > 0$, $\gamma_{Si} < 0$

Bath $(N_{\rm B})$

F. Dakis et al. arxiv.org/abs/2405.10778

Defect: **S** = 3/2Nuclear spins: ¹³C, ²⁹Si Proportion of spins: ²⁹Si/¹³C = 4.27Gyromagnetic ratio: $\gamma_C > 0$, $\gamma_{Si} < 0$

F. Dakis et al. arxiv.org/abs/2405.10778, Phys. Rev. Applied, to appear

Similar results for <u>Divacancy</u> and higher magnetic field

. <u>છ</u>										
a 4	-4.55	-3.44	-2.90	-2.53	-2.32	-2.08	-1.93	-1.80	-1.65	-1.55
3	-5.75	-4.15	-3.40	-2.94	-2.63	-2.34	-2.17	-2.06	-1.91	-1.75
2	-6.89	-4.87	-3.98	-3.41	-3.06	-2.80	-2.72	-2.61	-2.57	-2.41
1	-7.91	-5.84	-5.14	-4.58	-4.32	-4.20	-4.03	-3.85	-3.79	-3.80
	1	2	3	4	5	6	7	8	9	10

Bath $(N_{\rm B})$

31

What DD pulse sequece operates better?

Defect: **S** = 3/2 Nuclear spins: ¹³C, ²⁹Si Proportion of spins: ${}^{29}Si/{}^{13}C = 4.27$ Gyromagnetic ratio: $\gamma_{C} > 0$, $\gamma_{Si} < 0$

	10	1	1	1	1	1	0.99	0.98	0.975	0.97	0.945
	9	1	1	0.995	0.995	0.98	0.965	0.935	0.91	0.875	0.845
	8	0.99	0.995	0.99	0.96	0.95	0.935	0.85	0.845	0.735	0.695
2)	7	0.985	0.98	0.935	0.92	0.84	0.76	0.685	0.69	0.59	0.48
	6	0.88	0.88	0.835	0.725	0.685	0.555	0.49	0.46	0.47	0.53
2	5	0.745	0.73	0.635	0.47	0.395	0.495	0.59	0.55	0.625	0.61
)	4	0.58	0.385	0.435	0.52	0.555	0.605	0.6	0.66	0.695	0.66
	3	0.41	0.53	0.56	0.615	0.625	0.59	0.665	0.535	0.605	0.575
	2	0.635	0.565	0.505	0.48	0.405	0.455	0.535	0.5	0.675	0.605
	1	0.58	0.835	0.96	0.97	0.995	0.985	1	0.995	1	0.995
		1	2	3	4	5	6	7	8	9	10

Bath $(N_{\rm B})$

Sign difference in gyrgomagnetic ratios

Defect: S = 3/2Nuclear spins: ¹³C, ²⁹Si Proportion of spins: ²⁹Si/¹³C = 4.27

$$\gamma_{\rm C} > 0$$
, $\gamma_{\rm Si} < 0$

Contents

- Introduction
- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Summary

> Discussed the challenges and the potential in spins coupled to defects

Sate fidelity deteriotates faster with size of the register

Showed the register-bath combinations where different DD pulses operate the best

> Developed high-throughput characterization method for arbitrary defects/host materials/registers

Dakis, Takou, Barnes, Economou. arxiv.org/abs/2405.10778 Phys. Rev. Applied, to appear

dakisfilippos@vt.edu

Acknowledgements

Evangelia Takou

Sophia E. Economou

Ed Barnes

