

Assessing Nuclear Spin Registers Coupled to Defects for Quantum Memories

Filippos Dakis

Economou & Barnes Groups

Contents

- Introduction
- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Contents

• Introduction

- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Memory-based repeaters

Memory-based repeaters

Quantum internet

Create and distribute entanglement Control with high precision/fast the nodes of the network (gates)

6

Seminal Experiments

T. H. Taminiau et al, *Nat. Nanotechnol*. **9**, 171 (2014)

Seminal Experiments

T. H. Taminiau et al, *Nat. Nanotechnol*. **9**, 171 (2014)

S. L. N. Hermans et al**,** *Nature* **605**, 663 (2022)

SiV:

SiC divacancy:

A. Bourassa et al*, Nat. Mater.* **19**, 1319 (2020)

C.T. Nguyen et al, *Phys. Rev. Lett.* **123**, 183602 (2019)

Contents

• Introduction

- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Single spin coupled to defect

Hamiltonian for a nuclear spin (e.g., ¹³C) coupled to an electronic qubit (e.g., NV center) Example Theory Executive Control of the Nuclear spin operators Larmor Frequency

$$
H = \left| 0 \right\rangle \left\langle 0 \right| \otimes \omega_{\text{L}} I_z + \left| 1 \right\rangle \left\langle 1 \right| \otimes \left[(\omega_{\text{L}} - A_{||}) I_z - A_{\perp} I_x \right]
$$
\n17. $\left| 0 \right\rangle / 0 \right| \otimes H$ $\left| 1 \right\rangle / 1 \otimes H$ $\left| 1 \right\rangle / 1$ $\left| 1 \right\rangle$ $\left| 1 \right\rangle$

$$
\Rightarrow H = |0\rangle\langle 0| \otimes H_0 + |1\rangle\langle 1| \otimes H_1
$$

The nuclear spin experiences a different Hamiltonian conditional to the state of the electronic spin!

$$
U = \ket{0} \bra{0} \otimes R_{n_0}(\phi_0) + \ket{1} \bra{1} \otimes R_{n_1}(\phi_1)
$$

\n
$$
\xrightarrow{\text{2x2 nuclear spin}}
$$

$$
U = \ket{0} \bra{0} \otimes R_{n_0}(\phi_0) + \ket{1} \bra{1} \otimes R_{n_1}(\phi_1)
$$

$$
\phi_0 = -\phi_1 = \pi/2 \qquad \mathbf{n}_0 = \mathbf{n}_1 = \mathbf{x}
$$

$$
U=\sigma_{00}\otimes\operatorname{R}_x(\pi/2)+\sigma_{11}\otimes\operatorname{R}_x(-\pi/2)=\overline{\operatorname{CR}_x(\pi/2)}
$$

$CR_x(\pi/2) |+0\rangle = |0\rangle |-\rangle + |1\rangle |+\rangle$

 $\overline{\mathrm{CR}_x(\pi/2)} \sim \mathrm{CNOT} = \sigma_{00} \otimes \mathbb{1} + \sigma_{11} \otimes X$

$$
U = \ket{0} \bra{0} \otimes R_{n_0}(\phi_0) + \ket{1} \bra{1} \otimes R_{n_1}(\phi_1)
$$

$$
\phi_0 = \phi_1 = \pi/2 \qquad \mathbf{n}_0 = -\mathbf{n}_1 = \mathbf{x}
$$

$$
U=\sigma_{00}\otimes\operatorname{R}_x(\pi/2)+\sigma_{11}\otimes\operatorname{R}_{-x}(\pi/2)=\fbox{CR}_x(\pi/2)
$$

$CR_x(\pi/2) |+0\rangle = |0\rangle |-\rangle + |1\rangle |+\rangle$

 $\overline{\mathrm{CR}_x(\pi/2)} \sim \mathrm{CNOT} = \sigma_{00} \otimes \mathbb{1} + \sigma_{11} \otimes X$

Contents

- Introduction
- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Controlling nuclear spins selectively

What happens when there are many nuclear spins?

Challenges:

- **All** nuclei are **always** coupled to defect (crosstalk)
- Experimental constraint: only defect drive available

Potential:

- Large entangled states (q. info, metrology, etc)
- Exploit large coherence times of nuclear spins
- High-fidelity quantum gates

Dynamical Decoupling pulses

Suppress the decoherence caused by the (unwanted) nuclear spins

Dynamical Decoupling pulses

Suppress the decoherence caused by the (unwanted) nuclear spins

- ➢ CPMG
- ➢ UDD-n
- ➢ XY-n

Also enhance interactions with specific nuclei (registers)

Control knobs:
• Unit time τ_k

- Unit time
- Iterations $\,N$

Spin distinguishabity

- Unit time $\;\; \mathcal{T}_{k} \;\;$
- $U=\sigma_{00}\otimes \textrm{R}_{x}(\pi/2)+\sigma_{11}\otimes \textrm{R}_{x}(-\pi/2)=\textrm{CR}_{x}(\pi/2)$ • Iterations N

17

Defect coupled to many nuclear spins

$$
H = \sum_{j=0}^{1} \sigma_{jj} \otimes \left(H_j^{(1)} \otimes 1_{2^{L-1}} + 1 \otimes H_j^{(2)} \otimes 1_{2^{L-2}} + \ldots + 1_{2^{L-1}} \otimes H_j^{(L)} \right)
$$

** Neglect nuclear-nuclear interactions Weaker than electron-nuclear interactions*

Hamiltonian of l th spin

Multi-qubit evolution operator

$$
U = \sigma_{00} \otimes_{l=1}^{L} R_{\mathbf{n}_0}^{(l)}(\phi_0^{(l)}) + \sigma_{11} \otimes_{l=1}^{L} R_{\mathbf{n}_1}^{(l)}(\phi_1^{(l)})
$$
\n\nRotation of \mathfrak{l}^{th} spin

E. Takou, E. Barnes and S. E. Economou, *Phys. Rev. X* **13**, 011004 (2023) ¹⁸

One-tangles

Calculate correlations between single nuclear spin & remaining system $(\epsilon_{\text{rest}}$ ||ith spin)

• Shown that the one-tangle for the ith spin is

$$
\epsilon_{\text{rest}||\text{i}^{\text{th}} \text{ spin}} = 1 - G_1^{(i)}
$$

- Reliable metric of nuclear spin selectivity
	- $\epsilon=1$ Spin is maximally entangled with de the defect
	- $\epsilon=0$ Spin is completely decoupled

* Perfect entangling gates

 $(G_1, G_2) = (0, 1)$

T. Linowski et al. *Journal of Physics A* **53**, 125303 (2020)

Quantifying entanglement

For any π – pulse sequence

$$
G_1=\left(\, \cos\frac{\phi_0}{2}\cos\frac{\phi_1}{2}+\mathbf{n}_0\cdot\mathbf{n}_1\sin\frac{\phi_0}{2}\sin\frac{\phi_1}{2}\right)^2
$$

$$
G_2=1+\mathbf{n}_0\cdot\mathbf{n}_1\sin\phi_0\sin\phi_1+2\left(\cos^2\frac{\phi_0}{2}\cos^2\frac{\phi_1}{2}+(\mathbf{n}_0\cdot\mathbf{n}_1)^2\sin^2\frac{\phi_0}{2}\sin^2\frac{\phi_1}{2}\right)
$$

Makhlin invariants (G_1, G_2) encode the non-local part of the gate:

- Depend on nuclear rotation axes & angles
- Directly optimize the gate

* Perfect entangling gates

	Identity	CNOT	SWAP	$\sqrt{\text{SWAP}}$
G ₂				

Makhlin, QIP **1**, 243-252 (2002) E. Takou, E. Barnes and S. E. Economou, *Phys. Rev. X* **13**, 011004 (2023)

Multipartite entanglement

$$
U = \sum_{j \in \{0,1\}} \sigma_{jj} \underbrace{\otimes^K_{k=1} R_{\mathbf{n}^{(k)}_j} \left(\phi^k_j\right)}_{\phi^k_{l=1}} \underbrace{\otimes^{L-K}_{l=1} R_{\mathbf{n}^{(K+l)}_j} \left(\phi^{(K+l)}_j\right)}_{\phi^k_{j}}
$$

Gate:

Target gate:

$$
U_0 = \sum_{j \in \{0,1\}} \sigma_{jj} \otimes_{k=1}^K R_{\mathbf{n}_j^{(k)}} \left(\phi_j^k\right)
$$

Kraus Operators

$$
E_i = \sum_{j=0,1} \frac{c_j^{(i)} p_j^{(i)}}{\sigma_{jj}} \otimes_{k=1}^K R_{\pmb{n}_j^{(k)}}(\phi_j^{(k)})
$$

Fidelity:

$$
F = \frac{1}{m(m+1)} \sum_{k} \text{Tr} \left[(U_0^{\dagger} E_k)^{\dagger} U_0^{\dagger} E_k \right] + \left| \text{Tr} \left[U_0^{\dagger} E_k \right] \right|^2
$$

Multipartite entanglement with single shot operation

Chose N^* and τ such that:

- ϵ_p is maximized for selected spins
- ϵ_p is minimized for unwanted spins
- Short gate time $N^*\tau = T_q < T_2^*$

Example

Questions we want to answer

- What DD sequences perform best for various cases?
- How does Fidelity deteriorate with increasing register and bath sizes?
- What are the protocols for achieving entangling states for (realistic) SiC defects?

Help experimental physicists conduct experiments!

Contents

- Introduction
- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Defect: **S** = 3/2 Nuclear spins: ¹³C, ²⁹Si Proportion of spins: $^{29}Si/^{13}C = 4.27$ Gyromagnetic ratio: y_C > 0, y_{Si} < 0

my 129Si

F. Dakis *et al.* arxiv.org/abs/2405.10778, Phys. Rev. Applied, to appear **25 Phys. Accomplied in the set of the set of**

 \bigcirc ¹³C

Average over

 13 C

200 realizations

Defect: **S** = 3/2 Nuclear spins: ¹³C, ²⁹Si Proportion of spins: $^{29}Si/^{13}C = 4.27$ Gyromagnetic ratio: y_C > 0, y_{Si} < 0

Average over 200 realizations $(N_{\mbox{\tiny R}})$

Register

-4.0 -3.5 $-3.0 -2.5$ -2.0 -1.5 $-1.0 -0.5$ 10 $\mathbf Q$ 8 6 \odot $3 - 2.88 - 2.52 - 2.20$ $\overline{4}$ 3 $\overline{2}$ -7.91 (4) $7\overline{ }$ 9 $\overline{2}$ $\overline{3}$ $5\overline{)}$ 6 8 10

 $\log_{10}(\overline{1-F})$

 $\mathsf F$. Dakis *et al.* arxiv.org/abs/2405.10778, Phys. Rev. Applied, to appear $\mathsf B$ ath $(N_{_{\mathrm{B}}})$

Defect: **S** = 3/2 Nuclear spins: ¹³C, ²⁹Si Proportion of spins: $^{29}Si/^{13}C = 4.27$ Gyromagnetic ratio: y_C > 0, y_{Si} < 0

Average over 200 realizations $(N_{\mbox{\tiny R}})$

Register

≤ -4.0 -3.5 $-3.0 -2.5$ -2.0 -1.5 $-1.0 -0.5$ 10 $\mathbf Q$ R 6 5 $\overline{4}$ $\overline{3}$ $\overline{2}$ $-7.91 -5.84 -5.14 -4.58 -4.32 -4.20 -4.03 -3.85 -3.79 -3.80$

 $\log_{10}(\overline{1-F})$

6

5

 τ

8

 $\overline{2}$

3

 $\overline{4}$

 $\mathsf F$. Dakis *et al.* arxiv.org/abs/2405.10778, Phys. Rev. Applied, to appear **probable as a constructed by the construction** 27

9

-10

Defect: **S** = 3/2 Nuclear spins: ¹³C, ²⁹Si Proportion of spins: $^{29}Si/^{13}C = 4.27$ Gyromagnetic ratio: y_C > 0, y_{Si} < 0

- Random realizations of n-spin positions and register vs bath assignment and calculated the fidelity (purity) of the gates; averaged over realizations
- Use to guide experiments/assess viability

Average over 200 realizations

²⁸ F. Dakis *et al.* arxiv.org/abs/2405.10778, *Phys. Rev. Applied, to appear*

Defect: **S** = 3/2 Nuclear spins: ¹³C, ²⁹Si Proportion of spins: $^{29}Si/^{13}C = 4.27$ Gyromagnetic ratio: y_C > 0, y_{Si} < 0

- Random realizations of n-spin positions and register vs bath assignment and calculated the fidelity (purity) of the gates; averaged over realizations
- Use to guide experiments/assess viability

Average over 200 realizations

 29 F. Dakis *et al.* arxiv.org/abs/2405.10778, *Phys. Rev. Applied, to appear* $Bath$ ($N_{\rm B}$) and $N_{\rm B}$) and $N_{\rm B}$

Defect: **S** = 3/2 Nuclear spins: ¹³C, ²⁹Si Proportion of spins: $^{29}Si/^{13}C = 4.27$ Gyromagnetic ratio: $y_C > 0$, $y_{Si} < 0$

F. Dakis *et al.* arxiv.org/abs/2405.10778 $\frac{1}{30}$ Bath (N_B) Bath (N_B)

Defect: **S** = 3/2 Nuclear spins: ¹³C, ²⁹Si Proportion of spins: $^{29}Si/^{13}C = 4.27$ Gyromagnetic ratio: y_C > 0, y_{Si} < 0

Bath $(N_{\rm B})$

 $\mathsf F$. Dakis *et al.* arxiv.org/abs/2405.10778, *Phys. Rev. Applied, to appear* $\mathsf B$ ath $(N_{\text{\tiny B}}$, $\mathsf B$

Similar results for Divacancy and higher magnetic field

What DD pulse sequece operates better?

Defect: **S** = 3/2 Nuclear spins: ¹³C, ²⁹Si Proportion of spins: $^{29}Si/^{13}C = 4.27$ Gyromagnetic ratio: $y_C > 0$, $y_{Si} < 0$

Register

52 F. Dakis *et al.* arxiv.org/abs/2405.10778, *Phys. Rev. Applied, to appear* \rm{Bath} ($N_{\rm{_B}}$)

Sign difference in gyrgomagnetic ratios

Defect: **S** = 3/2 Nuclear spins: ¹³C, ²⁹Si Proportion of spins: $^{29}Si/^{13}C = 4.27$

$$
\gamma_{\rm C}^{\vphantom{_{_{_{_{_{}}}}}}}>0\ ,\quad \gamma_{\rm Si}^{\vphantom{_{_{_{t}}}}}<0
$$

³³ F. Dakis *et al.* arxiv.org/abs/2405.10778, *Phys. Rev. Applied, to appear*

Contents

- Introduction
- Single nuclear spin
- Many nuclear spins and formalism
- Effectively assessing qubits in SiC
- Summary

Summary

➢Discussed the challenges and the potential in spins coupled to defects

➢Gate fidelity deteriotates faster with size of the register

➢Showed the register-bath combinations where different DD pulses operate the best

➢Developed high-throughput characterization method for arbitrary defects/host materials/registers

Dakis, Takou, Barnes, Economou*.* arxiv.org/abs/2405.10778 *Phys. Rev. Applied, to appear*

dakisfilippos@vt.edu

Acknowledgements

Evangelia Takou Sophia E. Economou Ed Barnes

