Learning quantum states of continuous variable systems

Francesco A. Mele **Antonio A. Mele Lennart Bittel** Jens Eisert

Vittorio Giovannetti Ludovico Lami Lorenzo Leone

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

Antonio A. Mele

Salvatore F. E. Oliviero

Quantum Learning Theory | + | Continuous Variable Systems | We Our work | Quantum Learning Theory | + | Continuous Variable Systems | Nur Work |

Extensively developed for $finite$ -dimensional systems $\begin{vmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$ Dimension = ∞

Extensively developed for $finite$ -dimensional systems \vert Dimension = ∞

Quantum state tomography = Learning unknown quantum states

Extensively developed for **finite**-dimensional systems \vert Dimension = ∞

Our work fills this gap

Quantum state tomography = Learning unknown quantum states

Despite many (heuristic) tomography methods in quantum optics, the literature lacks "*rigorous performance guarantees"*

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

Outline

- 1. Quantum state tomography
- 2. CV systems
- 3. Quantum state tomography of CV systems:
	- A. Energy-constrained states
	- B. Gaussian states
	- C. *t*-doped Gaussian states

Quantum state tomography = Learning unknown quantum states

Experiment

Unknown quantum state *ρ*

Tomography algorithm

Classical computer

Quantum state tomography

Tomography algorithm

Classical computer

ρ $\widetilde{\bm{O}}$ ≈*ρ*

Quantum state tomography

$$
d_{\text{tr}}(\tilde{\rho}, \rho) := \frac{1}{2} \|\tilde{\rho} -
$$

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

$\widetilde{\rho}$ Classical computer **Tomography** algorithm

Quantum state tomography

$$
\Pr\left[d_{\text{tr}}(\tilde{\rho},\rho) \leq \varepsilon\right] \geq 1-\delta
$$

$$
d_{\text{tr}}(\tilde{\rho},\rho) := \frac{1}{2} \|\tilde{\rho} - \rho\|_1
$$

2

$\rho \in S$ = some subset of the set of quantum states

$$
\Pr\left[d_{\text{tr}}(\tilde{\rho},\rho)\leq \varepsilon\right]\geq 1-\delta
$$

 $d_{\textrm{tr}}(\tilde{\rho},\rho) :=$

Quantum state tomography

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

1

2

Problem 1 (Quantum state tomography)

Given N copies of the (unknown) state $\rho \in \mathcal{S}$, the goal is to output $\tilde{\rho}$ such that $\Pr[d_{\text{tr}}(\tilde{\rho}, \rho) \leq \varepsilon] \geq 1-\delta$

Problem 1 (Quantum state tomography)

Given N copies of the (unknown) state $\rho \in \mathcal{S}$, the goal is to output $\tilde{\rho}$ such that $\Pr[d_{\text{tr}}(\tilde{\rho}, \rho) \leq \varepsilon] \geq 1-\delta$

Definition

The sample complexity $N(S, \varepsilon, \delta)$ is the minimum N satisfying Problem 1

 $N(\mathcal{S}, \varepsilon, \delta\,) = \Theta$ $\tilde{I}(\mathbf{I})$ $\sqrt{2}$ D^2 $\frac{1}{\varepsilon^2} \log \left($ 1 *δ*)) ε^2 $\left\langle \varepsilon^2 \right\rangle$

 $N(\mathcal{S}, \varepsilon, \delta\,) = \Theta$ $\tilde{I}(\mathbf{I})$ $\sqrt{2}$ D^2 *ε*²) *ε*

$$
,\varepsilon,\delta\left.\right)=\tilde{\Theta}\left(\frac{D^{2}}{\varepsilon^{2}}\right)
$$

$$
(\mathcal{S}, \varepsilon, \delta) = \tilde{\Theta}\left(\frac{D}{\varepsilon^2}\right)
$$

$$
,\varepsilon,\delta\big)=\tilde{\Theta}\left(\frac{D^2}{\varepsilon^2}\right)
$$

$$
(\mathcal{S}, \varepsilon, \delta) = \tilde{\Theta}\left(\frac{D}{\varepsilon^2}\right)
$$

Outline

- 1. Quantum state tomography
- 2. CV systems
- 3. Quantum state tomography of CV systems:
	- A. Energy-constrained states
	- B. Gaussian states
	- C. *t*-doped Gaussian states

Vacuum state α (*d* photons)
 α (*d* photons)

CV systems

Quantum optical systems

1 **mode** \leftarrow 1 qu*d* it with $d = \infty$

Hilbert space = $\text{Span}\{|0\rangle, |1\rangle, ..., |d\rangle, |d+1\rangle, ... \}$

A CV system consists in *n* modes (i.e. *n* qu*d* its with $d = \infty$)

Fock states

Outline

- 1. Quantum state tomography
- 2. CV systems
- 3. Quantum state tomography of CV systems:
	- A. Energy-constrained states
	- B. Gaussian states
	- C. *t*-doped Gaussian states

Quantum state tomography of CV systems

Without any additional prior assumption, tomography is **impossible** (*dimension*=∞)

 \hat{E} = energy observable ̂

In lab, CV systems have bounded **energy**

̂

$$
\hat{E}|k_1\rangle \otimes |k_2\rangle \otimes \dots \otimes |k_n\rangle = \left(\sum_{i=1}^n k_i\right) |k_1\rangle \otimes |k_2\rangle \otimes \dots \otimes |k_n\rangle
$$

Total number of photons

Quantum state tomography of CV systems

Without any additional prior assumption, tomography is **impossible** (*dimension*=∞)

 \hat{E} = energy observable ̂

̂

Assumption:

The unknown state ρ satisfies $\left|\text{Tr}\left[\rho E\right]\leq E_{\text{tot}}\right|$ for some *known* E_{tot}

$$
\hat{E}|k_1\rangle \otimes |k_2\rangle \otimes \dots \otimes |k_n\rangle = \left(\sum_{i=1}^n k_i\right) |k_1\rangle \otimes |k_2\rangle \otimes \dots \otimes |k_n\rangle
$$

Total number of photons

Quantum state tomography of CV systems

Without any additional prior assumption, tomography is **impossible** (*dimension*=∞)

In lab, CV systems have bounded **energy**

 \hat{E} = energy observable ̂

̂

Assumption:

The unknown state ρ satisfies $\left|\text{Tr}\left[\rho E\right]\le nE\right|$ for some *known* E

$$
\hat{E}|k_1\rangle \otimes |k_2\rangle \otimes \dots \otimes |k_n\rangle = \left(\sum_{i=1}^n k_i\right) |k_1\rangle \otimes |k_2\rangle \otimes \dots \otimes |k_n\rangle
$$

Total number of photons

Quantum state tomography of CV systems

Without any additional prior assumption, tomography is **impossible** (*dimension*=∞)

In lab, CV systems have bounded **energy**

Tomography of energy-constrained states

$P(n, E) := \{n \text{ mode pure state } \psi : \text{ Tr}[\psi E] \leq nE \}$

S*ample complexity* ?

̂

Tomography of energy-constrained states

 $P(n, E) := \{n \text{ mode pure state } \psi : \text{ Tr}[\psi E] \leq nE \}$

S*ample complexity* ?

$$
\Pr\left[d_{\text{tr}}(\tilde{\psi},\psi)\leq \varepsilon\right]\geq 1-\delta
$$

Theorem

Let $\psi \in \mathcal{S}(n, E)$ be an **unknown** state. Then, a number $N = \Theta \left(\frac{1}{\sqrt{2n}} \right)$ of

 c opies of ψ are both n ecessary and sufficient to output $\tilde{\psi}$ such that

Then, a number
$$
N = \tilde{\Theta}\left(\frac{E^n}{\varepsilon^{2n}}\right)
$$
 of

̂

Tomography of energy-constrained states

 $P(n, E) := \{n \text{ mode pure state } \psi : \text{ Tr}[\psi E] \leq nE \}$

S*ample complexity* ?

 $\tilde{I}(\mathbf{I})$ $\overline{\mathcal{M}}$ *En ε*2*n*) E^n *ε ⁿ*

$$
\Pr\left[d_{\text{tr}}(\tilde{\psi},\psi)\leq \varepsilon\right]\geq 1-\delta
$$

Theorem

Let $\psi \in \mathcal{S}(n, E)$ be an **unknown** state. Then, a number $N = \Theta \left(\frac{1}{\sqrt{2n}} \right)$ of

 c opies of ψ are both necessary and sufficient to output $\tilde{\psi}$ such that

̂

CV tomography is 'extremely inefficient'

'Extreme inefficiency' of CV tomography:

$\varepsilon = 0.1$, $\delta t = 1$ ns

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

n-mode state with energy per mode $\leq E$

CV tomography: $n = 10, E = 1$

 \rightarrow Total time $=$ 3000 years

$\varepsilon = 0.1$, $\delta t = 1$ ns

Outline

- 1. Quantum state tomography
- 2. CV systems
- 3. Quantum state tomography of CV systems:
	- A. Energy-constrained states
	- B. Gaussian states
	- C. *t*-doped Gaussian states

• m(*ρ*) (**first moment**)

• *V*(*ρ*) (**covariance matrix**)

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

Fact

 \overline{a} A Gaussian state ρ is *uniquely* identified by m(ρ) and $V(\rho).$

Fact

 \overline{a} A Gaussian state $\,\rho\,$ is *uniquely* identified by $\,mathsf{m}(\rho)\right)$ and $\mathsf{V}(\rho)\right)$

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

• m(*ρ*) (**first moment**)

• *V*(*ρ*) (**covariance matrix**)

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

• *V*(*ρ*) (**covariance matrix**)

what is the resulting **trace distance error** on the state?

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

If we estimate m(ρ) and $V(\rho)$ of an unknown Gaussian state ρ with precision ε ,

Fundamental question

what is the resulting **trace distance error** on the state?

$\rho_{\mathsf{m},V}:=$ Gaussian state

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

If we estimate m(ρ) and $V(\rho)$ of an unknown Gaussian state ρ with precision ε ,

Fundamental question
Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

If we estimate m(ρ) and $V(\rho)$ of an unknown Gaussian state ρ with precision ε ,

$$
1 - t \Vert_2 + \sqrt{2 \Vert V - W \Vert_1} \Big)
$$

Fundamental question

$$
\left(1, \frac{\|\mathsf{m}-\mathsf{t}\|_2}{\sqrt{4E+1}}\right), \min\left(1, \frac{\|V-W\|_2}{4E+1}\right)
$$

 \leq Trace distance Error $\leq O(\sqrt{\varepsilon})$

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

If we estimate m(ρ) and $V(\rho)$ of an unknown Gaussian state ρ with precision ε ,

$$
1 - t \Vert_2 + \sqrt{2 \Vert V - W \Vert_1} \bigg)
$$

Fundamental question

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

If we estimate m(ρ) and $V(\rho)$ of an unknown Gaussian state ρ with precision ε ,

Fundamental question

AS Holevo - arXiv preprint arXiv:2408.11400, 2024

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

If we estimate m(ρ) and $V(\rho)$ of an unknown Gaussian state ρ with precision ε ,

Fundamental question

Fundamental question

what is the resulting **trace distance error** on the state?

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

If we estimate m(ρ) and $V(\rho)$ of an unknown Gaussian state ρ with precision ε ,

$$
\frac{1}{2} ||\rho_{m,V} - \rho_{t,W}||_1 \le \frac{1 + \sqrt{3}}{8} \text{Tr} \left[||V - W| \,\Omega^{\mathsf{T}} \left(\frac{V + W}{2} \right) \Omega \right] + \sqrt{\frac{\min(||V||_{\infty}, ||W||_{\infty})}{2}} ||m - t||_2
$$

Theorem (*Tight* inequality) [Bittel L., Mele F.A., Mele A.A., Tirone S., Lami L., *Optimal estimates of trace distance between bosonic Gaussian states and applications to learning* [\(arXiv:2411.02368\)](https://arxiv.org/abs/2411.02368)]

Fundamental question

what is the resulting **trace distance error** on the state?

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

If we estimate m(ρ) and $V(\rho)$ of an unknown Gaussian state ρ with precision ε ,

$$
\frac{1}{\left(\frac{V+W}{2}\right) \Omega} \sqrt{\frac{\min(||V||_{\infty}, ||W||_{\infty})}{2}} ||m - t||_{2}
$$

$$
\frac{+ ||W||_{\infty}}{2} ||V - W||_{1}
$$

[Bittel L., Mele F.A., Mele A.A., Tirone S., Lami L., *Optimal estimates of trace distance between bosonic Gaussian states and applications to learning* [\(arXiv:2411.02368\)](https://arxiv.org/abs/2411.02368)]

Fundamental question

what is the resulting **trace distance error** on the state?

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

If we estimate m(ρ) and $V(\rho)$ of an unknown Gaussian state ρ with precision ε ,

$$
\frac{\sqrt{\frac{V+W}{2}}\Omega}{\sqrt{\frac{\min(\|V\|_{\infty}, \|W\|_{\infty})}{2}}}\|\mathbf{m}-\mathbf{t}\|_{2}
$$
\n
$$
\frac{\mathbf{w}}{\mathbf{w}}\|_{\infty}}\|\mathbf{v}-\mathbf{w}\|_{1}
$$
\nwe have:\n
$$
\mathbf{c} \in \mathbf{Error} = O(\varepsilon)
$$

[Bittel L., Mele F.A., Mele A.A., Tirone S., Lami L., *Optimal estimates of trace distance between bosonic Gaussian states and applications to learning* [\(arXiv:2411.02368\)](https://arxiv.org/abs/2411.02368)]

Theorem Tomography of **Gaussian states** is efficient
Let
$$
\rho
$$
 be an **unknown** *n* mode Gaussian state with $\text{Tr}[\rho \hat{E}] \leq nE$. Then, a
number

$$
N = O\left(\frac{n^7 E^4}{\varepsilon^4} \log\left(\frac{n^2}{\delta}\right)\right) = \text{poly}(n)
$$
of state copies suffices to output $\tilde{\rho}$ such that $\text{Pr}\left[d_{\text{tr}}(\tilde{\rho}, \rho) \leq \varepsilon\right] \geq 1 - \delta$

Theorem	Tomography of Gaussian states is efficient
Let ρ be an unknown <i>n</i> mode Gaussian state with $\text{Tr}[\rho \hat{E}] \leq nE$. Then, a number	
$N = O\left(\frac{n^7 E^4}{\varepsilon^4} \log\left(\frac{n^2}{\delta}\right)\right) = \text{poly}(n)$	
of state copies suffices to output $\tilde{\rho}$ such that $\text{Pr}\left[d_{\text{tr}}(\tilde{\rho}, \rho) \leq \varepsilon\right] \geq 1 - \delta$	

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

Improvements in our new paper!

[Bittel L., Mele F.A., Mele A.A., Tirone S., Lami L., *Optimal estimates of trace distance between bosonic Gaussian states and applications to learning* [\(arXiv:2411.02368](https://arxiv.org/abs/2411.02368))]

Outline

- 1. Quantum state tomography
- 2. CV systems
- 3. Quantum state tomography of CV systems:
	- A. Energy-constrained states \bigotimes
	- B. Gaussian states

C. *t*-doped Gaussian states

Definition

An *n*-mode state $|\psi\rangle$ is a "*t*-doped Gaussian state" if it is of the form

$$
\cdots (G)(W_1)G_0(0)^{\otimes n}
$$

Analogous results available in different settings:

- *Fermionic* setting [Mele A. A., Herasymenko Y., *Efficient learning of quantum states prepared with few fermionic non-Gaussian gates* (2024)]
- *Clifford* setting [Leone L., Oliviero S.F.E., Hamma A., *Learning t-doped stabilizer states* (2023)] [Grewal S., Iyer V., Kretschmer W., Liang D., *Efficient Learning of Quantum States Prepared With Few Non-Clifford Gates* (2023)]

Idea of the tomography algorithm (part 1)

By estimating m($|\psi\rangle\langle\psi|$) and $V(|\psi\rangle\langle\psi|)$, one can learn and undo G

Perform full-state tomography on the first $2t$ modes

|0⟩⊗(*n*−2*t*)

Idea of the tomography algorithm (part 2)

Theorem

If $t = O(1)$, tomography of t-doped Gaussian states is efficient.

Outline

- 1. Quantum state tomography
- 2. CV systems

- 3. Quantum state tomography of CV systems:
	- A. Energy-constrained states $\left\langle \right\rangle$
	- B. Gaussian states

C. *t*-doped Gaussian states

1 *ε*2*ⁿ*

- Sample-complexity for energy-constrained states:
	- "Extreme inefficiency" of CV tomography, due to the scaling: \sim –_{2n};

- Sample-complexity for energy-constrained states:
	- "Extreme inefficiency" of CV tomography, due to the scaling: \sim –_{2n};
- Tomography of Gaussian states is efficient;

1 *ε*2*ⁿ*

$$
\frac{1}{\varepsilon^{2n}}.
$$

- Sample-complexity for energy-constrained states:
	- "*Extreme inefficiency"* of CV tomography, due to the scaling: ; ∼
- Tomography of Gaussian states is efficient;
- Trade-off between "efficiency in tomography" and "non-Gaussianity": **(***t*-doped Gaussian states)

$$
\sim \frac{1}{\varepsilon^{2n}};
$$

- Sample-complexity for energy-constrained states:
	- "*Extreme inefficiency"* of CV tomography, due to the scaling: ; ∼
- Tomography of Gaussian states is efficient;
- Trade-off between "efficiency in tomography" and "non-Gaussianity": **(***t*-doped Gaussian states)
- Technical tools of independent interest:
	- Bounds on the trace distance between Gaussian states;
	- *Effective dimension* and *effective rank* of energy-constrained states;
	- Decomposition of *t*-doped Gaussian unitaries/states.

Open problems

- Optimal sample-complexity for energy-constrained mixed states;
- Optimal sample-complexity for Gaussian states;
- Property testing of Gaussian states
- Bosonic channels:
	- A. Tomography of arbitrary bosonic channels;
	- B. Tomography of bosonic Gaussian channels.
- Classical simulability of t-doped Gaussian states

Thank you!

Backup slides

 $\hat{\mathsf{R}} := (\hat{x}_1, \hat{p}_1, \cdots, \hat{x}_n, \hat{p}_n)$ (quadrature operator vector) ̂ ̂ ̂ t

$$
\hat{\mathbf{R}} := (\hat{x}_1, \hat{p}_1, \cdots, \hat{x}_n, \hat{p}_n)^{\mathsf{t}} \quad \text{(quadrature)}
$$

- Tr[*e*−*β^H*] ̂
-
- , $k - m$ ^t $h(\hat{\mathsf{R}} - \mathsf{m})$
	-

is a "**Gaussian state**" if *ρ*

for some $\beta \in (0,\infty]$ and some (quadratic) Hamiltonian H of the form

$$
e^{-\beta \hat{H}}
$$

$$
\hat{H} := (\hat{\mathsf{R}} -
$$

 $\rho =$

where $h \in \mathbb{R}^{\scriptscriptstyle \mathcal{Z}n,\scriptscriptstyle \mathcal{Z}n}$ is symmetric positive definite and $m \in \mathbb{R}^{\scriptscriptstyle \mathcal{Z}n}$. $h \in \mathbb{R}^{2n,2n}$ is symmetric positive definite and $m \in \mathbb{R}^{2n}$

Definition (Informal)

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

e operator vector)

• $m(\rho) := Tr[\rho \hat{H}]$ (first moment) ̂

$$
V_{ij}(\rho) := \text{Tr} \left[\rho \left\{ \hat{R}_i - m_i(\rho) \mathbf{1}, \hat{R}_i \right\} \right]
$$

$$
A \quad R1 - A
$$

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

 (ρ) **1**, $R_j - m_j(\rho)$ **1** $\left\{$ $\forall i, j \in [2n]$

 ${A, B} = AB + BA$

• $m(\rho) := Tr[\rho \hat{H}]$ (first moment) ̂

$$
V_{ij}(\rho) := \text{Tr}\left[\rho \left\{\hat{R}_i - m_i(\rho)\mathbf{1}, \hat{R}_j - m_j(\rho)\mathbf{1}\right\}\right] \quad \forall i, j \in [2n]
$$

$$
\{A, B\} = AB + BA
$$

Fact
A Gaussian state ρ is uniquely identifiable

• $m(\rho) := Tr[\rho \hat{H}]$ (first moment) ̂

$$
V_{ij}(\rho) := \text{Tr}\left[\rho \left\{\hat{R}_i - m_i(\rho)\mathbf{1}, \hat{R}_j - m_j(\rho)\mathbf{1}\right\}\right] \quad \forall i, j \in [2n]
$$
\n
$$
\{A, B\} = AB + BA
$$
\nEstimation of ρ

\n

A Gaussian state $(\rho$)is *uniquely* identified by $\textsf{m}(\rho)$ and $\textsf{V}(\rho)$,

• $m(\rho) := Tr[\rho \hat{H}]$ (first moment) ̂

$$
V_{ij}(\rho) := \text{Tr} \left[\rho \left\{ \hat{R}_i - m_i(\rho) \mathbf{1}, \hat{R}_i \right\} \right]
$$

$$
\{A, B\} = A
$$

Fact
A Gaussian state ρ is uniquely identifiable

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

 (ρ) **1**, $R_j - m_j(\rho)$ **1** $\left\{$ $\forall i, j \in [2n]$

 ${AB + BA}$

ed by $m(\rho)$ and $V(\rho)$.

Proof sketch of "Any tomography algorithm must satisfy $N \geq \Theta \left(\frac{1}{\gamma_{\text{eq}}} \right)$ "

n mode pure states

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

 \mathbf{I} $\overline{}$ *En* $\sqrt{\varepsilon^{2n}}$

$\mathcal{S}(n, E)$ $\qquad \qquad \mathcal{S}(n, E) := \{n \text{ mode pure state } \psi : \text{ Tr} \big[\psi \hat{E} \big] {\leq} nE \}$ ̂ $\leq nE$ }

Proof sketch of "Any tomography algorithm must satisfy $N \geq \Theta \left(\frac{1}{\gamma_{n}} \right)$ "

n mode pure states

*ψ*1

*ψ*2

ε ε

*ψ*3

ε

*ψ*4

ε

*ψ*7

ε

*ψ*5

ε

*ψ*6

ε

-**packing net:** *ε*

We construct M energy-constraint states

such that

 $d_{\text{tr}}(\psi_i, \psi_j) > 2\varepsilon \quad \forall i \neq j \in [M]$

$$
\{\psi_1, \psi_2, \cdots, \psi_M\} \subseteq \mathcal{S}(n, E)
$$

 \mathbf{I} \sqrt *En ε*2*ⁿ*)

Proof sketch of "Any tomography algorithm must satisfy $N \geq \Theta \left(\frac{1}{\gamma_{n}} \right)$ "

Alice Bob

 \mathbf{I} \sqrt *En ε*2*ⁿ*)

Proof sketch of "Any tomography algorithm must satisfy $N \geq \Theta \left(\frac{1}{\gamma_{\text{eq}}} \right)$ "

Alice $i \in [M]$ Bob *i* ∈ [*M*]

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

 \mathbf{I} $\overline{}$ *En* $\sqrt{\varepsilon^{2n}}$

Proof sketch of "Any tomography algorithm must satisfy $N \geq \Theta \left(\frac{1}{\gamma_{n}} \right)$ "

Alice $i \in [M]$ Bob *i* ∈ [*M*]

 \mathbf{I} \sqrt *En ε*2*ⁿ*)

Proof sketch of "Any tomography algorithm must satisfy $N \geq \Theta \left(\frac{1}{\gamma_{n}} \right)$ "

Alice $i \in [M]$ Bob *i* ∈ [*M*]

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

 \mathbf{I} \sqrt *En* $\left(\frac{2n}{\epsilon^{2n}}\right)^n$

Holevo bound \longrightarrow $N \geq \Theta$ $\tilde{\Theta}(\log_2 M) = \tilde{\Theta}$

Proof sketch of "Any tomography algorithm must satisfy $N \geq \Theta \left(\frac{1}{\gamma_{n}} \right)$ "

 Alice $i \in [M]$ Bob *i* ∈ [*M*]

 \mathbf{I} $\overline{\mathcal{L}}$ *En ε*2*ⁿ*)

n mode states

$Tr[\rho E] \leq nE$ ̂

Proof sketch of "There is a tomography algorithm with $N = \Theta \left(\frac{1}{2n} \right)$ "

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

 $\tilde{I}(\mathbf{I})$ $\overline{}$ *En* $\left(\frac{2n}{\epsilon^{2n}}\right)^n$

ε

Proof sketch of "There is a tomography algorithm with $N = \Theta \left(\frac{1}{2n} \right)$ "

$$
\dim \mathcal{H}_{\rm eff} = \tilde{\Theta}\left(\left(\frac{E}{\varepsilon^2}\right)^n\right)
$$

Hence, quantum state tomography is achievable with

$$
N = \tilde{\Theta}\left(\frac{\dim \mathcal{H}_{\mathrm{eff}}}{\varepsilon^2}\right) = \tilde{\Theta}\left(\left(\frac{E}{\varepsilon^2}\right)^n\right).
$$

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

 $\tilde{I}(\mathbf{I})$ $\overline{}$ *En* $\sqrt{\frac{2n}{n}}$ **Proof sketch of** "There is a tomography algorithm with $N = \Theta \left(\frac{1}{2n} \right)$ "

Lemma

$$
\mathcal{H}_{\text{eff}} := \text{Span}\left\{ |k_1\rangle \otimes |k_2\rangle \otimes \cdots \otimes |k_n\rangle : \sum_{i=1}^n k_i \leq \left[\begin{array}{c} n \end{array} \right] \right\}
$$

Let ρ such that $\mathrm{Tr}[\rho E] \leq nE$. Then, the projection ρ_{eff} of ρ onto $\mathscr{H}_{\textrm{eff}}$ satisfies ̂

$$
d_{\text{tr}}(\rho, \rho_{\text{eff}}) \leq \varepsilon
$$

Hence, quantum state tomography is achievable with

$$
N = \tilde{\Theta} \left(\frac{\dim \mathcal{H}_{\text{eff}}}{\varepsilon^2} \right)
$$

̂ *E*2*ⁿ ε*3*ⁿ*) $\sum_{n=1}^{\infty}$ $\overline{}$ *E*2*ⁿ ε*2*ⁿ*)

$$
= \tilde{\Theta}\left(\left(\frac{E}{\varepsilon}\right)^n\right)
$$

$$
= \tilde{\Theta}\left(\left(\frac{E}{\varepsilon^2}\right)^n\right)
$$

Hence, quantum state tomography is achievable with

$$
N = \tilde{\Theta}\left(\frac{r_{\rm eff} \dim \mathcal{H}_{\rm eff}}{\varepsilon^2}\right) = \tilde{\Theta}\left(\frac{E^{2n}}{\varepsilon^{3n}}\right).
$$

[R. O'Donnell and J. Wright, Efficient quantum tomography (2015)] [J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yu, Sample-optimal tomography of quantum states (2017)] [R. Kueng, H. Rauhut, and U. Terstiege, Low rank matrix recovery from rank one measurements (2014)]

$$
,\varepsilon,\delta\left.\right)=\tilde{\Theta}\left(\frac{D^{2}}{\varepsilon^{2}}\right)
$$

$$
(\mathcal{S}, \varepsilon, \delta) = \tilde{\Theta}\left(\frac{D}{\varepsilon^2}\right)
$$

$$
N(S, \varepsilon, \delta) = \tilde{\Theta}\left(\frac{Dr}{\varepsilon^2}\right)
$$

$$
,\varepsilon,\delta\left(=\tilde{\Theta}\left(\frac{D^{2}}{\varepsilon^{2}}\right) \right)
$$

$$
(\mathcal{S}, \varepsilon, \delta) = \tilde{\Theta}\left(\frac{D}{\varepsilon^2}\right)
$$

$$
\blacktriangleright N(\mathcal{S}, \varepsilon, \delta) = \tilde{\Theta}\left(\frac{Dr}{\varepsilon^2}\right)
$$

The term "**tomography**" was first introduced in Quantum Physics in the context of **optical systems** [Smithey, D. T. et al "*Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum*" (1993)]

Despite many (heuristic) approaches validated in quantum optics labs, the literature lacks "*rigorous performance guarantees"*

Our work fills this gap

We give guarantees wrt **trace distance**

Theorem

Improvement for pure Gaussian states

Let ρ be an **unknown** n mode pure Gaussian state with $\text{Tr}[\rho E] \leq nE$. Then, a number

Let ψ be a pure Gaussian state, let $\tilde{\rho}$ be any state, with $\text{Tr}[\psi E]$, $\text{Tr}[\tilde{\rho} E] \leq E_{\text{tot}}.$ Then:

̂

$$
N = O\left(\frac{n^5 E^4}{\varepsilon^4} \log\left(\frac{n^2}{\delta}\right)\right)
$$

of state copies suffices to output $\tilde{\rho}$ such that $\Pr\left[d_{\text{tr}}(\tilde{\rho},\rho)<\varepsilon\right]>1-\delta$

Theorem

̂ ̂

$$
d_{\text{tr}}(\psi, \tilde{\rho}) \le \sqrt{E_{\text{tot}} + \frac{n}{2}} \left(2 \|\mathbf{m}(\psi) - \mathbf{m}(\tilde{\rho})\|_2^2 + \|V(\psi) - V(\tilde{\rho})\|_{\infty} \right)^{1/2}
$$

Proof idea of the sufficient condition:

Lemma

$$
\mathcal{H}_{\text{eff}} := \text{Span}\left\{ |k_1\rangle \otimes |k_2\rangle \otimes \cdots \otimes |k_n\rangle : \sum_{i=1}^n k_i \leq \left[\begin{array}{c} n \ 1 \end{array} \right]
$$

Let ρ such that $\mathrm{Tr}[\rho E] \leq nE$. Then, the projection ρ_{eff} of ρ onto $\mathscr{H}_{\textrm{eff}}$ satisfies ̂

In addition, ρ_{eff} is 4*ε*-close to a state of \mathcal{H}_{eff} with rank

$$
d_{\text{tr}}(\rho, \rho_{\text{eff}}) \leq \varepsilon.
$$

$$
r_{\rm eff} = \tilde{\Theta}\left(\left(\frac{E}{\varepsilon}\right)^n\right)
$$

Fundamental question

If we estimate m(ρ) and $V(\rho)$ of an unknown Gaussian state ρ with precision ε , what is the resulting **trace distance error** on the state?

Theorem

Let
$$
\rho
$$
, $\tilde{\rho}$ be Gaussian states with $\text{Tr}[\rho \hat{E}]$, $\text{Tr}[\tilde{\rho} \hat{E}] \le E_{\text{tot}}$. Then:

$$
d_{\text{tr}}(\rho, \tilde{\rho}) \le \sqrt{2(E_{\text{tot}} + 1)} \left(||\text{m}(\rho) - \text{m}(\tilde{\rho})||_2 + \sqrt{2||V(\rho) - V(\tilde{\rho})||_1} \right)
$$

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

Not proved via fidelity

Fundamental question

If we estimate m(ρ) and $V(\rho)$ of an unknown Gaussian state ρ with precision ε , what is the resulting **trace distance error** on the state?

Theorem

Let
$$
\rho
$$
, $\tilde{\rho}$ be Gaussian states with Tr[$\rho \hat{E}$], Tr[$\tilde{\rho} \hat{E}$] $\leq E_{\text{tot}}$. Then:

$$
d_{\text{tr}}(\rho, \tilde{\rho}) \leq \sqrt{2(E_{\text{tot}} + 1)} \left(||\text{m}(\rho) - \text{m}(\tilde{\rho})||_2 + \sqrt{2||V(\rho) - V(\tilde{\rho})||_1} \right)
$$

Learning quantum states of continuous variable systems, [arXiv:2405.01431](https://arxiv.org/abs/2405.01431) (2024)

$$
\delta_u\bigg]
$$

$$
\mathcal{F}_0(V_1, V_2) = \frac{F_{\text{tot}}}{\sqrt[4]{\det [V_1 + V_2]}},
$$

$$
F_{\text{tot}}^4 = \det \left[2 \left(\sqrt{1 + \frac{(V_{\text{aux}} \Omega)^{-2}}{4}} + 1 \right) V_i \right]
$$

$$
V_{\text{aux}} = \Omega^T (V_1 + V_2)^{-1} \left(\frac{\Omega}{4} + V_2 \Omega V_1 \right)
$$

Not proved via fidelity

$$
\mathcal{F}(\hat{\rho}_1, \hat{\rho}_2) = \mathcal{F}_0(V_1, V_2) \exp \left[-\frac{1}{4} \delta_u^T (V_1 + V_2)^{-1} \right]
$$

Notation

Hilbert space of one $\textsf{mode} := \text{Span}\{\,|0\rangle\,,|1\rangle,\,\cdots\,,\,|d\rangle,|d+1\rangle,\cdots\}$

$$
\hat{a} := \sum_{k=1}^{\infty} \sqrt{k} |k-1\rangle\langle k| \quad \text{(annihilation)}
$$

$$
\hat{x} := \frac{\hat{a} + \hat{a}^{\dagger}}{\sqrt{2}}
$$
 (position operator)

Vacuum state α (*d* photons)
 α (*d* photons)

n operator)

$$
\hat{p} := \frac{\hat{a} - \hat{a}^{\dagger}}{\sqrt{2}i}
$$
 (momentum operator)

, $k - m$ ^t $h(\hat{\mathsf{R}} - \mathsf{m})$

\hat{G} is a **Gaussian unitary** if it is a composition of $e^{-iH_{\text{quad}}}$, where $\ \hat{H}_{\text{quad}}$ is a (quadratic) Hamiltonian: ̂ ̂ ̂ quad

$$
\hat{H}_{\text{quad}} := (\hat{\mathsf{R}}
$$

Any pure Gaussian state $\ket{\psi}$ is of the form $\ket{\psi}=G\ket{0}$, for some Gaussian unitary *G* ̂ ̂

where $h \in \mathbb{R}^{\mathbb{Z}^n,\mathbb{Z}^n}$ is symmetric and $m \in \mathbb{R}^{\mathbb{Z}^n}$. $h \in \mathbb{R}^{2n,2n}$ is symmetric and $m \in \mathbb{R}^{2n}$

Definition