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Quantum Learning Theory       Continuous Variable Systems Our work+

Extensively developed for 
finite-dimensional systems Dimension = ∞

Quantum state tomography = Learning unknown quantum states

Despite many (heuristic) tomography methods in quantum optics, 
the literature lacks “rigorous performance guarantees”
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Given  copies of the (unknown) state , the goal is to output  such that
N ρ ∈ 𝒮 ρ̃

Pr[dtr(ρ̃,ρ) ≤ ε] ≥ 1−δ

Problem 1 (Quantum state tomography)

The sample complexity  is the minimum  satisfying Problem 1N(𝒮, ε, δ) N
Definition
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  N(𝒮, ε, δ ) = Θ̃ ( D2

ε2
log ( 1

δ ))
Example 1

D
𝒮 := {quDit states}D

ε δ

 

[R. O’Donnell and J. Wright, Efficient quantum tomography (2015)]
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[R. O’Donnell and J. Wright, Efficient quantum tomography (2015)]
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D

Example 2
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Hilbert space  = Span{ |0⟩ , |1⟩, ⋯ , |d⟩, |d + 1⟩, ⋯}

1 mode  1 qu it with d d = ∞

Vacuum state 
(  photons)0

(  photons)d

CV systems

Quantum optical systems

A CV system consists in  modes (i.e.  qu its with )n n d d = ∞

Fock states
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Tomography of energy-constrained states

Sample complexity ?
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ε n
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,ε = 0.1 δt = 1 ns

Experiment

Experiment ρ

Experiment ρ

ρ̃
ρ

Tomography

δt

δt

Experiment ρ

N

-mode state with energy per mode   n ≤ E

,n = 10 E = 1CV tomography:

Total time = 3000 years

n = 10-qubit tomography:n
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Theorem Tomography of Gaussian states is efficient

Let  be an unknown  mode Gaussian state with . Then, a 
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An -mode state  is a “ -doped Gaussian state” if it is of the formn |ψ⟩ t
Definition

|ψ⟩ = Gt Wt ⋯ G1 W1 G0 |0⟩⊗n

Gaussian unitaries single-mode (non-Gaussian) unitaries
|0⟩

|0⟩

|0⟩
|0⟩

|0⟩

|0⟩
|0⟩

Gt−1G1G0

W1

Wt−1

Wt

Gt

n

|ψ⟩ =
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Any -doped Gaussian state  can be written ast |ψ⟩
Theorem

Gaussian unitary -mode (non-Gaussian) unitary2t

(compression of non-Gaussianity)

|ψ⟩ = G (u2t ⊗ 1n−2t) |0⟩⊗n

Analogous results available in different settings:


• Fermionic setting [Mele A. A., Herasymenko Y., 
Efficient learning of quantum states prepared with few 
fermionic non-Gaussian gates (2024)]


• Clifford setting [Leone L., Oliviero S.F.E., Hamma A., 
Learning t-doped stabilizer states (2023)] [Grewal S., Iyer 
V., Kretschmer W., Liang D., Efficient Learning of Quantum 
States Prepared With Few Non-Clifford Gates (2023)]

|0⟩

|0⟩

|0⟩
|0⟩

|0⟩

|0⟩
|0⟩

G

u2t

n

|ψ⟩ =

2t
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By estimating  and , one can learn and undo  m( |ψ⟩⟨ψ | ) V( |ψ⟩⟨ψ | ) G

|0⟩

|0⟩

|0⟩
|0⟩

|0⟩

|0⟩
|0⟩

G

u2t

n

|ψ⟩ =

2t

Idea of the tomography algorithm (part 1)
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Perform full-state 
tomography on the 
first  modes2t
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|0⟩
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n
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|0⟩⊗(n−2t)

Perform full-state 
tomography on the 
first  modes2t

If , tomography of -doped Gaussian states is efficient.t = O(1) t
Theorem
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Conclusions

• Sample-complexity for energy-constrained states: 

“Extreme inefficiency” of CV tomography, due to the scaling: ;∼
1

ε2n

• Tomography of Gaussian states is efficient;

• Technical tools of independent interest:


• Bounds on the trace distance between Gaussian states;


• Effective dimension and effective rank of energy-constrained states;


• Decomposition of -doped Gaussian unitaries/states.t

First investigation of CV tomography with rigorous guarantees wrt trace distance.

• Trade-off between “efficiency in tomography” and “non-Gaussianity”: 
 ( -doped Gaussian states)t



Open problems

• Optimal sample-complexity for energy-constrained mixed states;


• Optimal sample-complexity for Gaussian states;


• Property testing of Gaussian states


• Bosonic channels:


A. Tomography of arbitrary bosonic channels;


B. Tomography of bosonic Gaussian channels.


• Classical simulability of t-doped Gaussian states



Thank you!
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   (quadrature operator vector)R̂ := ( ̂x1, ̂p1, ⋯, ̂xn, ̂pn)t

 is a “Gaussian state” if





for some  and some (quadratic) Hamiltonian  of the form 


,


where  is symmetric positive definite and . 


 


ρ

ρ =
e−βĤ

Tr[e−βĤ]
β ∈ (0,∞] Ĥ

Ĥ := (R̂ − m)t h (R̂ − m)

h ∈ ℝ2n,2n m ∈ ℝ2n

Definition
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•    (first moment)m(ρ) := Tr[ρR̂]

•    (covariance matrix)





V(ρ)

Vij(ρ) := Tr [ρ {R̂i − mi(ρ)1, R̂j − mj(ρ)1}] ∀i, j ∈ [2n]

{A, B} = AB + BA
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•    (covariance matrix)





V(ρ)

Vij(ρ) := Tr [ρ {R̂i − mi(ρ)1, R̂j − mj(ρ)1}] ∀i, j ∈ [2n]

{A, B} = AB + BA

L

Fact

A Gaussian state    is uniquely identified by  and .ρ m(ρ) V(ρ)
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•    (first moment)m(ρ) := Tr[ρR̂]

•    (covariance matrix)





V(ρ)

Vij(ρ) := Tr [ρ {R̂i − mi(ρ)1, R̂j − mj(ρ)1}] ∀i, j ∈ [2n]

{A, B} = AB + BA

L

Fact

A Gaussian state    is uniquely identified by  and .ρ m(ρ) V(ρ)
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Proof sketch of  “Any tomography algorithm must satisfy  ”N ≥ Θ̃ ( En

ε2n )

 mode pure statesn

𝒮(n, E)  mode pure state  :      𝒮(n, E) := {n ψ Tr[ψ ̂E]≤ nE }
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 mode pure statesn

ψ1

ψ2
εε

ψ3
ε

ψ4
ε

ψ7
ε

ψ5
ε

ψ6
ε

-packing net: 


We construct  energy-constraint states


  


such that





ε

M

{ψ1, ψ2, ⋯, ψM} ⊆ 𝒮(n, E)

dtr(ψi, ψj) > 2ε ∀i ≠ j ∈ [M]

Proof sketch of  “Any tomography algorithm must satisfy  ”N ≥ Θ̃ ( En

ε2n )Proof sketch of  “Any tomography algorithm must satisfy  ”N ≥ Θ̃ ( En

ε2n )

Learning quantum states of continuous variable systems, arXiv:2405.01431 (2024)

https://arxiv.org/abs/2405.01431


ψ1

ψ2
εε

ψ3
ε

ψ4
ε

ψ7
ε

ψ5
ε

ψ6
ε

Alice Bob
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ε2n )
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ψ1

ψ2
εε

ψ3
ε

ψ4
ε

ψ7
ε

ψ5
ε

ψ6
ε

Alice Bob

ψ⊗N
i

i ∈ [M]

Proof sketch of  “Any tomography algorithm must satisfy  ”N ≥ Θ̃ ( En

ε2n )
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ψ1

ψ2
εε

ψ3
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ψ4
ε

ψ7
ε

ψ5
ε
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ε

Alice Bob

ψ⊗N
i

i ∈ [M]
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ψ1

ψ2
εε

ψ3
ε

ψ4
ε

ψ7
ε

ψ5
ε

ψ6
ε

Alice Bob

ψ⊗N
i

Tomography 
algorithm

ψ̃

i ∈ [M]

Proof sketch of  “Any tomography algorithm must satisfy  ”N ≥ Θ̃ ( En

ε2n )Proof sketch of  “Any tomography algorithm must satisfy  ”N ≥ Θ̃ ( En

ε2n )
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ψ1

ψ2
εε

ψ3
ε

ψ4
ε

ψ7
ε

ψ5
ε

ψ6
ε

Alice Bob

ψ⊗N
i

Tomography 
algorithm

i

i ∈ [M]

Holevo bound     ⟶ N ≥ Θ̃(log2 M) = Θ̃ (( E
ε2 )

n

)

Proof sketch of  “Any tomography algorithm must satisfy  ”N ≥ Θ̃ ( En

ε2n )Proof sketch of  “Any tomography algorithm must satisfy  ”N ≥ Θ̃ ( En

ε2n )
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 mode statesn

Tr[ρ ̂E] ≤ nE

Proof sketch of  “There is a tomography algorithm with  ”N = Θ̃ ( En

ε2n )
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ε

 mode statesn

εℋeff
εdimℋeff = Θ̃ (( E

ε2 )
n

)

Proof sketch of  “There is a tomography algorithm with  ”N = Θ̃ ( En

ε2n )

Hence, quantum state tomography is achievable with 


.N = Θ̃ ( dimℋeff

ε2 ) = Θ̃ (( E
ε2 )

n

)
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ε

 mode statesn

εℋeff
ε

L

Lemma

ℋeff := Span { |k1⟩ ⊗ |k2⟩ ⊗ ⋯ ⊗ |kn⟩ :
n

∑
i=1

ki ≤ ⌈ nE
ε2 ⌉}

Let  such that  . Then, the 
projection  of  onto  satisfies


ρ Tr[ρ ̂E] ≤ nE
ρeff ρ ℋeff

dtr(ρ, ρeff) ≤ ε

Proof sketch of  “There is a tomography algorithm with  ”N = Θ̃ ( En

ε2n )

Hence, quantum state tomography is achievable with 


.N = Θ̃ ( dimℋeff

ε2 ) = Θ̃ (( E
ε2 )

n

)
Learning quantum states of continuous variable systems, arXiv:2405.01431 (2024)

https://arxiv.org/abs/2405.01431


Theorem

Let  be an unknown  mode state with  . Then:


• There exists a tomography algorithm with .


• Any tomography algorithm satisfies .


ρ n Tr[ρ ̂E] ≤ nE

N = O ( E2n

ε3n )
N ≥ Ω̃ ( E2n

ε2n )

Mixed case

Learning quantum states of continuous variable systems, arXiv:2405.01431 (2024)

https://arxiv.org/abs/2405.01431


reff = Θ̃ (( E
ε )

n

)

dimℋeff = Θ̃ (( E
ε2 )

n

)

Hence, quantum state tomography is achievable with 


.N = Θ̃ ( reff dimℋeff

ε2 ) = Θ̃ ( E2n

ε3n )

Proof sketch of  “There is a tomography algorithm with  ”N = O ( E2n

ε3n )
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  N(𝒮, ε, δ ) = Θ̃ ( D2

ε2 )
Example 1

[R. O’Donnell and J. Wright, Efficient quantum tomography (2015)]
[J. Haah, A. W. Harrow, Z. Ji, X. Wu, and N. Yu, Sample-optimal tomography of quantum states (2017)]
[R. Kueng, H. Rauhut, and U. Terstiege, Low rank matrix recovery from rank one measurements (2014)]

D

Example 2

𝒮 := {quDit pure states}   N(𝒮, ε, δ ) = Θ̃ ( D
ε2 )ε
DD

𝒮 := {quDit states}D
ε

Example 3

𝒮 := {quDit states with rank r}   N(𝒮, ε, δ ) = Θ̃ ( Dr
ε2 )ε
D

D
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  N(𝒮, ε, δ ) = Θ̃ ( D2

ε2 )
Example 1

D

Example 2

𝒮 := {quDit pure states}   N(𝒮, ε, δ ) = Θ̃ ( D
ε2 )ε
DD

𝒮 := {quDit states}D
ε

Example 3

𝒮 := {quDit states with rank r}   N(𝒮, ε, δ ) = Θ̃ ( Dr
ε2 )ε
D

D
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The term “tomography” was first introduced in Quantum Physics in the context of 
optical systems [ Smithey, D. T. et al "Measurement of the Wigner distribution and the density matrix of a light mode using optical 
homodyne tomography: Application to squeezed states and the vacuum” (1993)]

“Quantum state tomography” of optical systems

Despite many (heuristic) approaches validated in quantum optics labs, 
the literature lacks “rigorous performance guarantees”

Our work fills this gap

We give guarantees wrt trace distance

Learning unknown states Infinite-dimensional 
Hilbert spaces



Theorem

Improvement for pure Gaussian states

Let  be an unknown  mode pure Gaussian state with . Then, a 
number


 


of state copies suffices to output  such that 

ρ n Tr[ρ ̂E] ≤ nE

N = O( n5E4

ε4
log( n2

δ ))
ρ̃ Pr [dtr(ρ̃, ρ) < ε] > 1 − δ

Theorem
Let  be a pure Gaussian state, let  be any state, with . 
Then:


ψ ρ̃ Tr[ψ ̂E], Tr[ρ̃ ̂E] ≤ Etot

dtr(ψ, ρ̃) ≤ Etot +
n
2 (2∥m(ψ) − m(ρ̃)∥2

2 + ∥V(ψ) − V(ρ̃)∥∞)1/2



L

Lemma

ℋeff := Span { |k1⟩ ⊗ |k2⟩ ⊗ ⋯ ⊗ |kn⟩ :
n

∑
i=1

ki ≤ ⌈ nE
ε2 ⌉}

Let  such that  . Then, the 
projection  of  onto  satisfies


.

ρ Tr[ρ ̂E] ≤ nE
ρeff ρ ℋeff

dtr(ρ, ρeff) ≤ ε

Proof idea of the sufficient condition:

ε εℋeff
ε

ε ℋeff

In addition,  is -close to a state of  
with rank


 

ρeff 4ε ℋeff

reff = Θ̃ (( E
ε )

n

)
ρ ρeff

rank(ρ̄eff) = reff

4ε



Fundamental question
If we estimate  and  of an unknown Gaussian state  with precision , 
what is the resulting trace distance error on the state?

m(ρ) V(ρ) ρ ε

Theorem

Let  be Gaussian states with . Then:
ρ, ρ̃ Tr[ρ ̂E], Tr[ρ̃ ̂E] ≤ Etot

dtr(ρ, ρ̃) ≤ 2(Etot + 1) (∥m(ρ) − m(ρ̃)∥2 + 2∥V(ρ) − V(ρ̃)∥1)

Learning quantum states of continuous variable systems, arXiv:2405.01431 (2024)
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Notation

   (annihilation operator)̂a :=
∞

∑
k=1

k |k − 1⟩⟨k |

   (position operator)̂x :=
̂a + ̂a†

2

   (momentum operator)̂p :=
̂a − ̂a†

2i

Hilbert space of one mode      = Span{ |0⟩ , |1⟩, ⋯ , |d⟩, |d + 1⟩, ⋯}
Vacuum state 
(  photons)0

(  photons)d
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 is a Gaussian unitary if it is a composition of , where   is a 
(quadratic) Hamiltonian:


,


where  is symmetric and . 

Ĝ e−iĤquad Ĥquad

Ĥquad := (R̂ − m)t h (R̂ − m)

h ∈ ℝ2n,2n m ∈ ℝ2n

Definition

Any pure Gaussian state  is of the form , for some Gaussian 
unitary 

|ψ⟩ |ψ⟩ = Ĝ |0⟩
Ĝ

Learning quantum states of continuous variable systems, arXiv:2405.01431 (2024)

https://arxiv.org/abs/2405.01431

