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Motivation: Maximizing loophole-free nonlocality

1. Limited detection efficiency of off-the-shelf detectors,
o < 1

2. Exponential decay of effective detection efficiency,
—al

n=nl07" k1

3. High threshold critical detection efficiency,

n>n*

Previous research focussed on minimizing r/*

However, for real-world applications to be effective, mere violation of a Bell inequality is
insufficient!




-We solve a largely overlooked application-oriented question:

Which quantu:

Qual

ntum strategies that maxi
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Overview of our findings

m strategies yield the maximum loophole-free nonlocality in the presence of
inefficient detectors?

ally violate a tilted version of the Bell inequality ideally, yield

-We completely solve the CHSH scenario:

We fi;

the unique optimal quantum strategies, for a:
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nefficient detectors!
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As a byproduct, we uncover an intriguing phenomenon:
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Preliminaries

® Bipartite Bell experiments and experimental behavior

X € [mA] y € [mB]

/ \l p = {p(ab|xy))
The no-signaling polytope
= [dA] b e |d] /

. NS
¢ | ocal causal behavior and the local polytope &

= {p(ab|xy) = J dip(Mp(a|x)pb|yr)} € £
A

/‘

plab|xy) = pa(a|x)ppD|y) = 6,405,



Preliminaries

® Bell inequalities

p(p) = ), cYplablxy) <y, VpE Z

a,b,x,y
® Nonlocal behaviors

peENS\ZL = f(p) > Py

® Measure of nonlocality

pP(P) — Py




Preliminaries

* Quantum strategies

X € [mA] yE [mB]

/ pAB\ .
ﬂ 1) RN
a < [dA] b E [dB]

* Quantum behaviors and the quantum set
= {p(ab|xy) = Tr(p,s M, @ N})} € @

* Maximum quantum violation of the Bell inequalities
max{f(p)} = fg

pe@




Effect of imperfect detectors

The detectors sometimes fail to click, which results in the occurrence of a

X € [mA] y € [mp]

/ p\ﬂ

ae[dA]UJ_ be[dB]UJ_

“no-click” event, L

Detection efficiencies 14, nz € [0,1]} M
Treat 1 as an additional outcome

nanpp(a = a,b=b|x,y) if a € [d],b € [dyl.
(1 = n)ngp®(b = bly)ifa=1,be [dg],
ny(1 —nppWMa=dlx) if ae [dA],15 =1,
(1 =1 —np), else,

Problem: changes the Bell scenario
. locally assign a pre-existing outcome

p'Ya,b|x,y) =




Local assignment strategies

* Local assignment strategy: q = {g(ab|xy) = g,(a|x)gx(b|y)} € &L

Alice assigns the outcome a € [d,| to L with probability g,(a | x)
Bob assigns the outcome b € [dj] to L with probability gz(b | y)

* Effective behavior given 14, 175, q

~/

p=0Q,  ® =nmp+n1—npp* + (1 —n)ngp® + (1 —nH(1 —np)q,

where p = p(ab | xy), pA = {psla|x)gz(b|y)}, PB = {qua|x)pgb]y)}

/‘

q(ab|xy) = qu(a|x)qpb|y) = 5a,ax5b,by

NS



Maximum loophole-free nonlocality

* Effect of imperfect detectors on the value of Bell inequalities

A®) = nampP®) + n4(1 = )Y + (1 = n)npP°) + (1 =) - np)H(Q)

* Loophole-free violation:

pP(P) > P




Lemma: Tilted Bell inequalities

e For any 1,4, 15, and any Bell inequality f(p) < f <, the optimal quantum
strategies that yield the maximum loophole-free violation of the Bell
inequality are those that maximally violate a tilted Bell inequality of the
form,

P 1=nyl—y
where fo(114, 1) < - Z C;;Zy , qalalx) = 0,,,qpb|y) = 0y, c; = Zy Cab» Ch = 2 Caly

Y

N lA B Xy

* The loophole-free value f(P) is



Example: The simplest Bell scenario

* CHSH Bell experiment and the CHSH inequality:

x € {0,1} y € {0,1}

./ \. C(p) _ Z (—l)x'y<AxBy> < 9
XY

ae{+1—1} be{+1—1}

Effective violation of CHSH inequality in the presence of imperfect
detectors with a local assignment strategy q:

CP) = C(Q,, , «@) = n4mpCP) + (1 = )1 = 1) C(Q@) + n4(1 = nxk) C™) + (1 = nngCP®) > 2.

* Objective: Find quantum strategies that yield the maximum loophole-free

violation of the CHSH inequality
max{C(p) — 2}
pe@



Maximum loophole-free nonlocality in the CHSH scenario

* Consider the deterministic strategy

Q(Cl ‘X) — 5a,+19 Q(b ‘y) — 5b,+l anya = {091}
* The useful Lemmma yields the following doubly-tilted CHSH inequality

The loophole-free value of the CHSH functional is _

* Consequently, for any given 1,4, 15, the maximum loophole-free violation of CHSH

inequality max{C(p) — 2} corresponds to the maximum violation of the doubly-tilted
pe@

CHSH inequality
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Maximum loophole-free nonlocality in the CHSH scenario

* Consider the deterministic strategy

Q(Cl ‘X) — 5a,+19 Q(b ‘y) — 5b,+l anya = {091}
* The useful Lemmma yields the following doubly-tilted CHSH inequality

The loophole-free value of the CHSH functional is

* Consequently, for any given 14, 115,

inequality max{C(p) — 2} correspc
pe@

CHSH inequality

he maximum Joophole-free violation of CHSH

nds to the maximum violation of the doubly-tilted



Maximum loophole-free nonlocality in the CHSH scenario

® Observation: A quantum loophole-free violation of the CHSH inequality

C(p) > 2 is not possible if the detection efficiencies #,, 5 fail to satisfy,
A
3n, — 1
® Retrieving the exact expression for the maximum violation of the doubly-

Np >

tilted CHSH inequalities as a function of 74, 15, the traditional methods,

such as the NPA hierarchy and SOS decomposition method, turned out to
be intractable.

® Nevertheless, via Jordan’s Lemmma-based proof technique, we obtain
analytical self-testing statements entailing the analytical expression for

maximum quantum violation c4(714, 175), demonstrating that the optimal
strategies are unique up to local isometries.



Maximum loophole-free nonlocality in the CHSH scenario

* Optimality of local assignment strategy
Up to local relabelling there is one additional family of doubly-tilted CHSH inequalities,

, . 2 2 1 1 ,
Cho(@) = CP) + — (1 —np){Ag) —— (1 —ny)(By) <2 |1 —— ——| = co(is:1p) -
Np Ha Ha  NB
2.8 Lo an A L L L L L
neq(n,m) + (1 —n)*2 7
26L ---mcdelnn) - (1-mn)?2 h
=)
=24[ :
) I
2.2F -
P . e N S T T
0.7 0.75 0.8 0.85 0.9 0.95

n
comparing the maximum effective violation of the CHSH inequality (solid blue line) with the

assignment strategy L. — + 1, and the maximum effective violation of the CHSH inequality with

the other assignment strategy L, —» + 1, L — — 1 (dashed orange curve).



Maximum loophole-free nonlocality in the CHSH scenario

* Maximum loophole-free violation of the CHSH inequality

=D

0.6 0.6 | 2
A B
A plot of the maximum loophole-free violation of the CHSH inequality, C(p), against detection efficiencies

Nas Np E [l,l], where we used the analytical expression for maximum quantum violation of the doubly-
tilted CHSH inequality c4(714, 175). The solid red line represents Bob's critical detection efficiency

HA
k —
ﬂB_3

Y below which a loophole-free quantum violation of the CHSH inequality is not possible.
-




Maximum loophole-free nonlocality in the CHSH scenario

e Effect of inefficient detectors on nonlocal correlations

3.0 1 {\ :
s\ Diso
28E 14,1 = 0.85 >~ C(P;s,) = 2V/2
s Dtilte
tited C(P,ieg) = 2.65
26 Vo
B C, . (Pritrea) ~ 2.98098
QO Ly
~ ﬁtllte(i\s ~
2.2 Diso —_ CPritreq) = 219876
20 . AN Gy, v 208854
2 — —1 — 0 — 1 — 2
(Ao) + (Bo)
The represents the set of quantum correlations p € @ in ideal conditions. With the

detection efficiencies n, = 7z = 0.85 and the local assignment strategy
galal|x) = 0,0,q5(b|y) = 8, the effective quantum correlations p = Q,MB(p) are constrained to
the smaller



Self-testing of Bell inequalities

* The most accurate form of certification of qguantum devices!

o Self-testing statement: Any quantum strategy ({ M, }, {Ng }>Pap)

attaining the maximum violation f(p) = p, of a Bell inequality must be
equivalent to the self-tested optimal quantum strategy ({11}, {Hz}, WaR)

up to auxiliary degrees of freedom and local unitary transformations,

BP) = fs = (L}, (TE ), )

Determined by the Bell
functional and optimal

(up to local isometries) measurements (112}, {IT’}




Self-testing of CHSH inequalities tilted for an imperfect detector

* Asymmetrically tilted CHSH inequalities

Cp) = ), (=" (AB,) + a(Ag) <2 +a
where a = ﬂi(l — ), g € (112,11, 1, = 1.

* Self-testing statement:

{AO — G,Al — Ux}
Colar) = \/8 + 200 = {I§O = COS } 0, + SIn i ax,él = COS | 0, — SIN |4 O, }
|ly) = cos@|00) +sinf|11))

where @ = 2/A/ 1 + 2 tan? 26, tan(x) = sin(26) .

* Proof via the Sum of Squares (SOS) decomposition method.

ad I'X],V > quant-ph > arXiv:1504.06960




Self-testing of CHSH inequalities tilted for an imperfect detector

* These decompositions are then used to prove that c4(a) self-tests the optimal strategy.

({A}, {B,}, yun)

e For any quantum strategy ({A,}, {B;}, 1//’AB), the SOS decomposition implies
P.| ')y = O for all i, such that there exists operators {Z,, X, Zp, X} satisfying,

Z W) =Zg |y, sinOX,(1+Zp) |y =cosOX,(1—Z,)|y).

This implies the existence of local isometries, @ ,and ® 5, mapping any optimal strategy

(1AL} {By 1, W', p) to the reference strategy ({A, }, { By}, Wyp)
@, @ Py(|y) = |y) ® |junk), ®, @ PRA; @ B|y)) =A, ®B,|y) ® |junk),

where |junk) represents the arbitrary state of additional degrees of freedom on which
the measurements act trivially. AT X1V > quant-ph > arxiv:1504.06960




Self-testing of CHSH inequalities tilted for imperfect detectors

Self-testing statement:

The maximum quantum violation c4(a, o) of the symmetrically (@ = f) tilted CHSH inequality is the
largest root of the degree 4 polynomial,

11
A=A +@—-ad)l’ + (Toﬂ — 12a% — 4) 2%+ 2a® — a* —20a* — 32)A + 5a° — 21a* + 16a* — 32.

C,.(p) = cgla, a) self-tests a two-qubit quantum strategy with optimal ( * ) local observables of the form
(from Jordan’s Lemma),

such that the optimal cosines are equal, i.e., c*(a) = ¢i () = ¢ (a) € [0,1] and satisfy the relation,

|
c*(a) = < [30{2 — 4 + \/16 + 9a* + 8&2(26@(61, a) — 1)



Self-testing of CHSH inequalities tilted for imperfect detectors

* Self-testing of partially incompatible observables

—_— =1
e (3 = 0.1

7 =10.01
e (3 =().00 1
7 = 0.0001
3 =10

- ===«

0 0.5 1 1.5 >
@)

optimal cosines of Alice ci(a, p) self-tested by the maximum quantum violation
Cop(P) = cgla, p) of the doubly-tilted CHSH inequalities.



Self-testing of CHSH inequalities tilted for imperfect detectors

* The optimal state |y) the eigenvector corresponding to the non-degenerate
maximum eigenvalue of the Bell operator

A\

Con= ) (DA, ®B,+a(A)®1,+1,® By).

X,y
1

* Self-testing of non-maximally entangled

0.8
states:

0.6
A plot of the Schmidt coefficients *of &7

: : 0.4

the optimal non-maximally entangled
quantum state. Notice,asa = f — 1, 0.2
the optimal state becomes almost

product. 0 0.2 0.4 0.6 0.8 1

X



Robust Self-Testing

* Robustness of the self-testing statements

1 )

0.8 F

a = 0.3
a=04 _
a =105 T
o = (.6
a=0T7 "]
- o = (.8
0 v o\
2 2.D 3 3.0

C(t(l (p)

Lower bounds & on the minimum quantum fidelity 7 < & * from the level L = 3 of
NPA hierarchy between the actual state and the optimal self-testing state against the

violation C,_ (p) of the symmetrically (¢ = f) tilted CHSH inequality for tilting
parameters o € {0.3,0.4,0.5,0.6,0.7,0.8}.
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Self-testing of CHSH inequalities tilted for imperfect detectors

* Exploding NPA levels in the simplest Bell scenario
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* Self-testing via SOS decompositions method is analytically intractable!



Complexity related to compatibility?

* Notice, that in contrast to the asymmetrically tilted case / = O wherein Alice's optimal
cosine ci(a, p = 0) stays constant with a and level 1+AB is enough, for the general
case, whenever > 0, Alice's optimal measurements change with a, and tend towards
compatible measurements as a — 2 — [, where the NPA levels explode.
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Towards optimal DIQKD with imperfect detectors

* Objective: To device optimal protocols for DIQKD given efficiencies 14, 5 € [0,1]

1_'"|""|""|""|""|""|""
0.8:_—tilted
- - -1sotropic
@ 0.6 F
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Advantage of tilted strategies obtained in this work over the isotropic strategy in DIQKD
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