

Analog information decoding of bosonic-LDPC codes

Lucas Berent

Lucas.berent@tum.de PRX Quantum 5 020349 (arXiv:2311.01328)

Discrete variable quantum codes

- LDPC quantum code defined by two sparse matrices
 - \circ H_X : detects Z-errors
 - \circ H_Z : detects X-errors
- Each row = support of an X/Z operator $\Box H_X H_Z^T = 0$
- Codespace = +1 eigenspace of all checks
- Tanner graph

 \Box Bipartite graph whose incidence matrix is H_X/H_Z

■ [[7,1,3]]-Steane code: $/1 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0$

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Decoding QLDPC codes

- Syndrome extraction
 - □ Input: logical state $E |\psi\rangle_L$, ancillas $|A\rangle$
 - \Box Measure checks to obtain syndrome s
 - \Box Typically O(d) rounds necessary
- Decoder
 - \Box Find recovery *R* given *s*
 - \Box Apply correction to the state: $RE|\psi\rangle_L$
 - $\Box \quad \text{Successful if } RE |\psi\rangle_L = |\psi\rangle_L$
- Algebraically:
 - □ 'syndrome equation'

$$s = He$$

 \Box Find min. wt. r: s = Hr

Belief propagation

- goal: given *s*, find a minimum-weight estimate \hat{e} satisfying $\hat{e} = ARGMAX_e Pr(e|s)$
- Marginalisation problem on each bit exhaustive bit-wise computation:

$$Pr(e_1) = \sum_{e_2} \sum_{e_3} \dots \sum_{e_n} P(e_1, e_2, \dots, e_n | s)$$

Exploit structure of distribution by factorization from Tanner graph (check matrix):

$$Pr(e_1) = \sum_{e_4} \sum_{e_5} \dots \sum_{e_n} f(e_4, \dots, e_n) \dots \sum_{e_2} f(e_2 | \mathbf{s}) \sum_{e_3} f(e_1, e_2 e_2 | \mathbf{s})$$

"Iterative message passing"

BP+OSD

- BP may not converge
 □ Degeneracy of codes ("split-beliefs") Hê ≠ s
- OSD ~ inversion decoder to obtain a low-weight correction $H\hat{e}' = s$

Continuous variable quantum codes

■ (CV) cat qubits

 Information is encoded in a subspace of the Hilbert space of a QHO

- Basis: coherent states $\{|\alpha\rangle, |-\alpha\rangle\}$ □ $|+\rangle_{cat} \sim |\alpha\rangle + |-\alpha\rangle$ □ $|-\rangle_{cat} \sim |\alpha\rangle - |-\alpha\rangle$
- Logical computational basis states are □ $|0\rangle_{cat} \sim |+\rangle_{cat} + |-\rangle_{cat} \sim |+\alpha\rangle + O(e^{-2|\alpha|^2})$ □ $|1\rangle_{cat} \sim |+\rangle_{cat} - |-\rangle_{cat} \sim |-\alpha\rangle + O(e^{-2|\alpha|^2})$

Cat qubits – noise bias and analog syndromes

- The wave function of a coherent state is a Gaussian centered at *α*
 - Depending on readout value, we can assign an error probability
- Through engineered protection mechanisms
 - $\Box X \text{ error rate } \exp(O(|\alpha|^2))$
 - \Box Z error rate $O(|\alpha|^2)$
- effective biased-noise channel
- Concatenate with outer QLDPC code to obtain a bosonic-LDPC code

Analog Tanner graph decoding (ATD)

ТШ

- Add further analog nodes to Tanner graph
- $\bullet \quad H^A \coloneqq (H \mid I_m)$
 - $\Box \rightarrow$ full rank
- ~ BP+OSD on the ATG

ATD: time-domain decoding

Multiround ATG:

$$H^{3D} := \begin{pmatrix} H & 0 & 0 & \dots & \mathbb{1}_m & & & & \\ & H & 0 & \dots & \mathbb{1}_m & \mathbb{1}_m & & \\ & & H & 0 & \dots & \mathbb{1}_m & \mathbb{1}_m & & \\ & & \ddots & \ddots & & & \\ & & & H & 0 & 0 & & \mathbb{1}_m & \mathbb{1}_m \end{pmatrix}$$

- $\blacksquare == H^A \otimes \text{repetition code}$
- #repetitions $w \sim d$
- Overlapping window decoding using ATD

Single shot decoding with analog information

- Some codes have a single-shot property
 - O(1) many repetitions of syndrome are enough to achieve fault-tolerance
- Single-shot ATG $\Box \quad H^M \coloneqq \begin{pmatrix} H & I_m \\ 0 & M \end{pmatrix}$
- Additional nodes for analog syndrome
- Additional checks 'metachecks' for single-shot decoding

Quasi-single shot protocol

- $Q(H_X, H_Z), H_X$ is single-shot \Box e.g., 3D toric code
- Using ATD we can reduce the number of syndrome rounds needed
- We observe a small number w (independent of d) suffices

w-QSS protocol simulations

Summary and outlook

- We show how to use analog information in bosonic-LDPC decoding
 - □ OWD, single-shot using analog-information
- Inspired by concatenated bosonic-LDPC architecture
 - Also applicable to GKP-concatenated code and "soft-info" for DV codes
- QSS protocol allows to reduce the overhead
- Future work
 - $\hfill\square$ Cats on LSD
 - combine ATD and localized statistics decoding (arXiv:2406.18655)
 - □ Circuit-noise & hardware tailoring

Thanks

- Cheers to my collaborators
 - Timo Hillmann
 - Joschka Roffe
 - Jens Eisert
 - □ Robert Wille
- Check out <u>MQT.QECC</u> and <u>LDPCv2</u>
 Open-source software is important

Analog information decoding of bosonic-LDPC codes

Lucas Berent

Lucas.berent@tum.de PRX Quantum 5 020349 (arXiv:2311.01328)

